首页 > 范文大全 > 常用范文

数学教案分数的基本性质(整理11篇)

发布人:收集 发布时间:2024-08-29

数学教案分数的基本性质篇1

第一课时

一教学内容

分数的基本性质

教材第75页的例1,第76页”做一做“的第1题及第77页练习十四的第1一5题。

二教学目标

1.通过教学,使学生归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。

2.培养学生的迁移类推能力、抽象概括能力和观察能力。

3.让学生体会到数学知识间的内在联系,感受学习数学知识的价值。

三重点难点

抽象概括出分数的基本性质。

四教具准备

每人3张同样的正方形或长方形纸片。

五教学过程

(一)导入

1。直接口答下面各题的商,说说是怎样想的?根据什么知识?

120÷20=(12O×3)÷(30×3)=(120÷10)÷(30÷10)=

(二)教学实施

1.教学教材第75页的例1。

让学生拿3张同样的正方形或长方形纸片,分别对折一次、两次、四次,平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。

提示:你发现了什么?板书:==为什么相等?2.引导学生观察它们的分子、分母各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。

随着学生汇报,老师板书。

(从左往右观察)(从右往左观蔡)

3.提问:你还能举出这样的例子吗?

学生举例,老师分别板书出来。

4.观察以上例子,你得出什么结论?(学生讨论,汇报。)板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

提问:为什么0要除外?(学生讨论)

小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。

5.提问:你能不能根据分数与除法的关系和商不变的性质来说明分数的基本性质?

6.完成教材第76页”做一做“的第1题。说一说自己是怎样想的?学生根据分数的基本性质思考并说明思路。

7.完成教材第77页练习十四的第1题。

学生先独立涂色,然后比较大小并说明理由。

8.完成教材第77页练习十四的第2题。学生独立完成,说一说是怎样比较的?可以把化成,也可以把化成,再比较。

9.完成教材第77页练习十四的第3题。

学生两人一组,由一人说一个分数,另一个人说出一个相等的`分数。

10.完成教材第77页练习十四的第4题。

引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。

老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。

11.完成教材第77页练习十四的第5题。

进行口答练习。

(四)思维训练

1.一个分数的分母不变,分子乘3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?

2.在下面的括号里填上适当的数。

9÷15===6÷()=()÷6

(五)课堂小结

通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。

数学教案分数的基本性质篇2

教学目标:

1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

3、搞清求比值和化简比的区别与联系,建立事物间相互联系的观念,对学生进行辨证唯物主义的思想教育。

教学重点:比的基本性质和化简比

教学难点:求比值和化简比的区别和联系

教具:小黑板

一、故事引入

引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?

让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少?

教师根据学生的`回答板书:

3÷46÷89÷123:46:89:12

=3/4=6/8=9/12=3/4=6/8=9/12

1、三个除法算式有什么关系?

2、三个分数的值相等吗?

3、三个比相等吗?(相等)为什么?

4、猴王的分配公平吗?(公平)为什么?

是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。

三、探讨规律

师:上面的三个比什么变了?什么没变?

生:比的前后项变了,比值没变。

师:比的前后项是如何变化的?变化有没有一定的规律可循?下面我们来共同寻找、共同探讨。

1、首先让学生从左往右观察前后项的变化:前项3→6(3→9、6→9),后项4→8(4→12、8→12)分别是怎么变化的?让学生通过“观察→思考→讨论”后回答,教师根据学生的回答板书:

3:4=(3×2):(4×2)=6:8

3:4=(3×3):(4×3)=9:12

6:8=(6×1.5):(8×1.5)=9:12

上面的变化谁能用一句概括性的语言表达出来,让学生讨论回答,教师板书:

2、然后从右往左观察前后项又是如何变化的:

9:12=(9÷3):(12÷3)=3:4

6:8=(6÷2):(8÷2)=3:4

9:12=(9÷1.5):(12÷1.5)=6:8

3、讨论:上面同乘以或除以的“数”是不是任何数都可以?

4、揭示课题:这就是我们今天学习的“比的基本性质”。

5、尝试:

(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该()

(2)、如果3:2的后项变成15,要使比值不变,比的前项应该为()

四、运用规律

3:4、6:9、8:12这三个比中,比的前后项为互质数的是哪个比?(3:4),像这种前后项为互质数的比叫最简整数才(简称最件简比)。(板书)

1、化简比。

出示例1:把下面各比化成最简单的整数比。

(1)14:21(2)1/6:2/9(3)0.25:1.230:10

让学生讨论14:21如何化简?

2、小结化简比的方法。

师:谁来说说整数比如何化简,分数比如何化简,小数比如何化简?化简比的方法是什么?

3、比较化简比和求比值的异同。

强调:比值是一个数,化简比仍是一个比。(板书)

五、强化认识

1、判断:

①、1/2:1/4化简后得2()

②、比的前项和后项同时乘以或除以相同的数,比值不变()

③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3()

④、圆周率表示一个圆的周长和直径的比()

2、填空。(小黑板出示)

(1)、3÷4=()/()=()÷()=21:()

(2)、两个的比值是5/6,这两个数的最简比是()。

3、甲数是乙数的50%,用比的角度来描述这两个数的关系。

4、А、Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比

六、总结全课

今天我们学习了什么?应用它可以解决什么问题?化简比和求比值是否一样?

数学教案分数的基本性质篇3

教材分析:

《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的.重要基础,因此,理解分数的基本性质显得尤为重要。

教学目标:

1.知识与能力:经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。

2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。

3.情感、态度与价值观:让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。

教学重点:

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探究、归纳概括分数的基本性质。

教具准备:

课件

教学过程:

一、复习导入

1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。

2.商不变规律。

(1)计算:120÷3012÷340÷5400÷50

(2)说一说,你有什么发现?

(被除数和除数都缩小或扩大相同的倍数,商不变。)

二、新课讲授

1.教学例1。

(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。

提示:你发现了什么?板书:(为什么相等?)

(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?

(3)汇报:随着学生汇报,老师板书。

(4)观察以上例子,你能得出什么结论?

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

提问:为什么0要除外?

小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。

(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?

2.教学例2。出示题目

独立完成,集体订正,订正时说一说根据什么。

三、巩固练习

1.练习十四习题

第1题:按要求涂色,并比较它们的大小。

第2题:比较每组中的分数大小是否相等。

第3题:同位合作完成。

2.作业:练习十四4、5题,选作13题。

四、全课总结

这节课我们学了哪些知识?分数的基本性质是怎样的?

板书设计:

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

数学教案分数的基本性质篇4

教学目标:

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>

4、较好实现知识教育与思想教育的有效结合。

教学重点:理解和掌握分数的基本性质。

教学难点:能熟练、灵活地运用分数的基本性质。

教具准备:“分数基本性质”课件,正方形纸片,彩色粉笔。

教学过程:一、巧设伏笔、导入新课。

1、出示课件:120÷30的商是多少?

被除数和除都扩大3倍,商是多少?

被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

2、在下面□里填上合适的数。

1÷2=(1×5)÷(2×□)

=(1÷□)÷(2÷4)

①想一想,你是根据什么填上面的数的?(生口答)

(课件:商不变的性质)

②商不变的性质是什么?(生口答)

③除法与分数之间有什么关系?

生答,师板书:被除数÷除数=被除数/除数

二、讨论探究,学习新知。

1、课件出示:1÷2=(怎么写)

①1/2与()相等?你能想出哪些数?有办法怎么让它们相等吗?

让生合作探讨。

②生出示答案:1/2=2/4=4/8……

有选择填入上数。

2、引导学生证明它们相等。

①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

(课件演示)

上述演示让学生感知后,问你发现了什么?(生讨论)

②再逆向思考,观察板书和课件。

问你又发现了什么?(生讨论)

得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

3、验证、补充、强调

①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

④归纳出上述板书为“分数的基本性质”(课题)。

4、信息反馈、纠正、巩固。

①判断(出示课件)

A、分数的分子,分母都乘上或除以相同的.数,分数的大小不变。

B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

C、3/4的分子乘上3,分母除以3,分数的大小不变。

D、10/24=10÷2/24÷2=10×3/24×3()

完成后,强调重点,加以巩固。

②完成课本108页例2(学生尝试练习)

强调运用了什么性质?课件:“分数的基本性质”醒目强调。

三、实践练习,信息综合

1、练一练

①3/5=3×()/5×()=9/()

②7/8=()/48

③4÷18=()/()=4×5/18×()=2/()

2、练习二十二1—3题。

四、课堂总结、整体感知。

(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

五、发散巩固、自主选择。

想一想:(选择一道你喜欢的题做)

课件:

①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

数学教案分数的基本性质篇5

教学目标

1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

教学重难点

理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

教学工具

课件

教学过程

一、复习旧知,沟通联系。

1、口答下面各题。

12÷3=(12×10)÷(3×□)

18÷6=(18÷□)÷(6÷3)

你是根据什么填的?还记得商不变的.规律是怎样叙述的吗?

4÷5=()÷3

你是根据什么填的?分数与除法之间有什么关系?

2、猜想。

同学们,在除法里,有商不变的规律,而分数与除法是有联系的,那么,请同学们猜测一下,在分数里会不会也有类似的性质存在呢?

在分数里究竟有没有类似的性质存在,如果有,它又是怎样的呢?今天我们一起来研究这个问题。

二、探究新知,揭示规律。

1、感知规律

(1)动手操作

①小组合作分别把三张一样大的圆形纸片平均分成两份、四份、八份。

②涂色:把平均分成两份的将其中的一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。

③把涂色部分用分数表示出来。

④比一比:这3个分数之间有什么关系?

生通过动手操作,发现这三个分数之间是相等的关系。

学生汇报后,教师用电脑演示。

生观察分子分母变化规律发现:分数的分子和分母同时乘相同的数,分数大小不变。

(2)继续发现

师课件出示三个大小形状完全相同的长方形,请学生用分数表示涂色部分,并观察涂色部分,看有什么发现。

生发现涂色部分是相同的。

观察分子分母的变化规律发现:分数的分子和分母同时除以相同的数,分数大小不变。

也不能同时除以0。

2、抽象概括,总结规律。

引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。(讨论为什么0除外)

想一想:根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3、运用规律,自学例题。

(1)分组讨论。

把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?

(2)汇报讨论情况。

(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。

三、多层练习,巩固深化

1、基本练习。

根据分数的基本性质,把下列等式补充完整。

学生口答后,要求说出是怎样想的。

2、判断。(手势表示,并说明理由。)

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()

(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

(3)的分子乘以3,分母除以3,分数的大小不变。()

3、把2/3和4/24化成分母是12而大小不变的分数。

四、今天你有哪些收获。

数学教案分数的基本性质篇6

教学目标

1、进一步理解分数的基本性质;并能初步运用分数的基本性质进行约分。

2、掌握约分的含义和约分的一般方法,学会约分的书写形式,认识最简分数。

教学重点:

掌握约分的方法已经约分的书写形式

教学难点:

约分时通常约成最简分数。

教学过程:

一、复习

1、说一说:分数的基本性质

2、想一想:学习分数的基本性质有什么作用?

3、写一写:请你写出和12/24相等的分数在学生交流反馈后,引导学生对相等的分数做比较:分子分母都比原来大的,分子分母都比原来小的。

二、教学例3

1、出示例3:你能写出和12/18相等,而分子、分母都比较小的分数吗?

学生尝试自主思考。汇报:你是怎样想的?先在小组里交流。

2、教学约分的含义。

师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。

12/186/9

12/184/6

12/182/3

教师指出:约分要注意两点,一是约分后得到的分数要与原来的分数相等;二是约分后得到的分数的分子分母都要比原来的分数小。

3、教学约分的`书写形式

分子分母都要同时除以几呢?(分子分母同时除以2、3或者6。)

方法一:先分别除以12和18的公因数2、再分别除以6和9的公因数3。

方法二:分别除以12和18的最大公因数6。

规范:画斜线的方向和商的书写位置提示:熟练以后,约分可以直接写成12/18=2/3

约分到什么时候就不要继续除呢?(除到分子、分母只有公因数1为止。)

4、教学最简分数。

像2/3的分子分母只有公因数1,这样的分数叫做最简分数。约分时,通常要约成最简分数。

同步练习1:说出一个最简分数

同步练习2:把约成最简分数。

三、课堂练习

1、指出下面的哪些分数是最简分数。(练一练62页第一题)

2、分组练习(指名板演)练一练第二题

练习十一第5题

四、课堂作业:

数学教案分数的基本性质篇7

教学目标

1.知识目标:

理解分数基本性质的含义,学会运用分数的基性质把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。

2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力。

3.情感目标:渗透事物是相互联系,发展变化的辩证唯物主义

教学重点和难点

重点:理解分数基本性质的含义,掌握分数基本性质的推导过程。数学教学不仅要让学生掌握知识的结果,更应让学生掌知识的形成过程。因此确立分数的基本性质的推导过程为本课重点,并使学生在自主推导的基础上掌握分数的基本性质。

难点:理解分数基本性质“零除外”的道理,归纳分数的基本性质。

新课教学

1、故事引人,揭示课题。

1.1.教师讲故事。

猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

1.2动手操作:

分组:把准备好的纸条分成,讨论:你发现了什么?

2、比较归纳,揭示规律

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

填写书上的括号。

观察左面的3组式子,分子、分母怎样变化。用一句话概括;

观察右面的3组式子,分子、分母怎样变化。用一句话概括;

讲两句话合成一句话:

分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变。这叫做分数的基本性质。

多层练习,巩固深化。

1.体验作用

在方格纸上涂色表示

涂色部分还表示几分之几?

2.在下面()内填上合适的数和符号。

3.请你当法官(说明理由)

4.把相等的分数卸载同一个圈子里

5.课堂小结。

今天这节课你学到了什么?

课堂作业。

教学反思

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。反思本节课,我认为以下几点做得较成功:

(1)新课的引入新颖,一上课,先听一段故事,学生非常乐意,并立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的基本性质。教师环环紧扣的提问以及引导学生逐步展开的'充分的讨论,帮助学生一步步得出结论。

(2)重视学生能力的培养,知识力求让学生主动探索,逐步获取。在教学中,教师为学生提供了自主探索的机会,通过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括能力、动手操作能力和口头表达能力,充分体现学生的主体作用。

(3)课堂练习形式多样,有层次,有梯度,目的性、针对性较强,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。

本节课出现的问题也很多:

首先,在折纸交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。

其次,在形成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。

还有,“把每一份平均分成几份”这句话描述不够清晰,学生理解有困难,可以在课件中完善。

数学教案分数的基本性质篇8

教学目标

1、进一步理解分数基本性质的意义,掌握约分的方法。

2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

教学重难点约成最简分数

教学准备:分数卡片口算卡片

教学过程

一、自主回顾

回顾一下对约分的`理解情况

突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

师:什么是最简分数?

说一说。

二、巩固练习

师分数卡片判断

1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

你是怎样寻到的?说说自己的理由好么?

2、能用不同的分数表示下面各题的商吗?

练习十一第8题

师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。

师:你能写出不同的除法算式吗?

=()÷()=()÷()

你能说出几个除法的算式?

这些算式之间有什么联系?

3、快乐学习超市

超市画面快乐套餐1快乐套餐2

快乐套餐1:比一比○○0.4

计算并化简+=-=

在()填上最简分数20分=()时

快乐套餐2、3同上。

(分组练习小组代表汇报整合了练习十一10至14题)

4、集中练习

把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

分母是10的最简分数有几个?

请你提出一个类似的问题。

课堂作业

练习十一第9题,12、13、14题各自选2个

课后练习:完成练习册上的相应练习。

数学教案分数的基本性质篇9

教学目标:

1、经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2、培养学生的观察、比较、归纳、总结概括能力。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学设计

一、创设情境

师:(板书:2÷3)一个除法算式可以变戏法,你们信吗?谁能变出一个和它大小一样的除法算式?

生:4÷6。

师:还有吗?

生:10÷15。

师:还有吗?

生:20÷30。

......

师:简直太多了!你们是根据什么变出这些除法算式?(板:商不变)你能结合这其中的一个算式说一说吗?

师:它还能变,把这个算式变成一个分数你会吗?

生:2/3。

师:瞧,数学王国里有多神奇,这么简单的一个除法算式,其中蕴藏着商不变的性质,我们还发现了分数与除法的关系,那你们能猜出今天我们要探索数学王国里的什么知识吗?(板书:分数的基本性质)

二、自主探究,分层辅导

师:谁能用分数来表示图中的阴影部分?

生:9/12或者3/4。

师:从这两个分数中,你能发现什么?

师:一个分数是怎样变成和它大小相等的另外一个分数的呢?我们再来变个魔术。

(1)出示一张长方形白纸,边演示边说:“这是一张白纸,我们把它先对折,再涂一涂,看你能得到什么分数,把它记录在你的本上。比一比看谁变得最快。

(2)学生动手操作、汇报(将学生的作品粘在黑板上)

师:和他一样的都折出1/2的`举起作品互相看看。

(3)如果继续对折下去,你还能得到哪些不同的分数呢?边折边记录下来。(老师巡视提示:动作快的同学快去帮帮你周围那些动作慢的同学吧!)

师:你又得到了哪些分数?怎样得到的?(将学生的作品继续粘在黑板上)

师:观察比较这一组的分数,你能发现什么呢?

生:分数相等。

(板书:1/2=2/4=4/8)

师:你怎么知道的?

生:看图知道的。

师:这一组分数的分子、分母是怎样变化的?

生:都乘相同的数。

师:反过来看分子、分母又是怎样变化的?

生:都除以相同的数。

师:你们能用概括的语言说一说分数大小不变的规律吗?

师:为什么0除外?

师:分数大小不变的规律中要注意什么?

三、深化理解,灵活运用

1、媒体出示教材第44页第1题。练习后进行交流,2、出示教材第44页第2题,由学生直接进行抢答。

3、讨论教材第44页第3题的第(2)小题。

(本题比较开放,教师要做好引导,可以先由学生独立完成,然后四个人交流想法。)

4、大比拚

师:你们可真棒,怎样也没难住你们,再来一个挑战!谁来向老师挑战,挑战者出题,老师说出相等的分数,其他同学做裁判。

四、全课总结

这节课你有什么收获?(学生从知识、能力、情感方面进行自我收获总结)

数学教案分数的基本性质篇10

教学目的

1.使学生理解和掌握分数的基本性质.

2.培养学生观察、思考、动手操作和自学能力.

教学过程

一、导入新课.

故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的,(板书:).

分给组组这个西瓜的,(板书:).分给弟弟这个西瓜的,(板书:).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

二、新课.

1.实际操作列等式证实两组分数,每组分数大小相等.

(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

(板书:)

(2)教师提问:比较一下阴影部分的大小,结果怎样?

阴影部分相等,说明这三个分数怎样?

(随着学生回答老师将三个分数用“=”连接)

(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出?

(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接)

2.初步概括分数基本性质.

(1)观察两个等式,每个等式的'三个分数什么变了?什么没变?

(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

板书:

(3)谁能用一句话把这个变化规律叙述出来?

板书:分数的分子、分母都乘上同一个数,分数大小不变.

(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

板书:

(5)问:谁能用一句话把这个变化规律叙述出来?

谁能用一句话把这两个变化规律叙述出来?

(板书:或除以)

3.完整分数基本性质.

填空:

教师追问:第三题()里可以填多少个数?第4题呢?

为什么3、4题()里可以填无数个数?

()里填任何数都行吗?哪个数不行?(板书:零除外)

这里为什么必须“零除外”?

教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

(板书课题:分数基本性质)

4.深入理解分数基本性质.

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.

1.用直线把相等的分数连接起来.

2.把下列分数按要求分类.

和相等的分数:

和相等的分数:

3.判断下列各题的对错,并说明理由.

4.填空并说出理由.

5.集体练习.

四、照应课前谈话.

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.

这节课你有什么收获?

六、布置作业.

1.指出下面每组中的两个分数是相等的还是不相等的

2.在下面的括号里填上适当的数.

数学教案分数的基本性质篇11

教学目标

1、知识与技能:

使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、过程与方法:

学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、情感态度与价值观:

激发学生积极主动的情感状态,体验互相合作的乐趣。

教学重难点

1、教学重点:

使学生理解分数的基本性质。

2、教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学工具

课件

教学过程

一、故事情境引入

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的xx,老二分到了这块地的xx。老三分到了这块的xx。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

2、120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

120÷30=4(120×3)÷(30×3)=4(120÷10)÷(30÷10)=4

3、说一说:

(1)商不变的性质是什么?

(2)分数与除法的关系是什么?

4、让学生大胆猜测:

在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

(随着学生的回答,教师板书课题:分数的基本性质。)

二、新知探究

1、动手操作,验证性质。

(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

你发现了什么?

(2)观察比较后引导学生得出:

它们的分子、分母各是按照什么规律变化的?

(3)从左往右看:

平均分的份数和表示的份数有什么变化?

引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

(4)从右往左看:

引导学生观察明确:

xx的分子、分母同时除以2,得到什么?

板书:

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

(7)小结:

分数的分子、分母同时除以相同的`数(0除外),分数的大小不变。这就叫做分数的基本性质。

2、分数的基本性质与商不变的性质的比较。

在除法里有商不变的性质,在分数里有分数的基本性质。

想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

3、学习把分数化成指定分母而大小不变的分数。

教学例2

(一)把分数化成分母是12而大小不变的分数。

(1)出示例2,帮助学生理解题意。

(2)启发:要把化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

(3)让学生在书上填空,请一名学生口答。教师板书:

(二)巩固提升

1、下面算式对吗?如果有错,错在哪里?为什么会这样错。

2、判断,并说明理由。

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。(×)

(2)把x的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。(√)

(3)把x分子乘以3,分母除以3,分数的大小不变。(×)

课后小结

这节课我们学习了什么内容?你们有了什么收获呀?

利用分数的基本性质时,应该明确一下几点:

①分子、分母进行的是同一种运算,只能是乘以或除以。

②分子、分母乘或除以的是相同的数。而且必须是同时运算。

③分子、分母同时乘或除以的数不能使0。

④分数的大小是不变的。

板书

分数的基本性质。

分数的分子和分母同时除以相同的数,分数的大小不变。

分数的分子、分母同时除以相同的数(0除外),分数的大小不变。这就叫做分数的基本性质。