教学目标:
1.使学生掌握长方体和正方体体积的统一计算公式,并会灵活地应用公式进行体积计算。
2.提高学生综合运用知识的能力,培养学生的抽象概括能力。
教学重难点:
运用公式进行计算。
教学过程:
一、创设情境
1、出下图中长方体的长、宽、高和正方体的棱长。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究
1.认识长方体和正方体的底面。
通过预习你观察到到了什么?
生:图中画阴影部分的那一面我们把它叫做长方体或正方体的底面。师强调:这个面是由摆放的方式决定的。
2.长方体和正方体的底面面积。
(1)长方体和正方体的底面的面积叫做底面积
(2)怎样求长方体的底面积?(长方体的底面积=长×宽,即s=ab)怎样求正方体的.底面积?(正方体的底面积=棱长×棱长,即s=)
(3)长方体和正方体体积计算公式的统??
思考:我们能不能把长方体和正方体的体积公式统一成一个公式呢?
长方体的体积=长×宽×高=底面积×高
正方体的体积=棱长×棱长×棱长=底面积×棱长
结论:长方体或正方体的体积=底面积×高
用字母表示:v=sh
3.练习:
完成p43“做一做”第2题。讲解:“横截面”通过实物直观演示,让学生理解他的实际意义,懂得一个物体平放,立体图形的左面和右面就叫做横截面,如果竖起来,横截面就成了底面。所以
三、巩固练习:完成p45题8。
四、练习拓展:
1.计算:
2.一根长方体木料,它的横截面的面积是0.15,长2m。5根这样的木料体积一共是多少?
3.有100块底面积是42,高6cm的立方体石块。这些石块的体积一共是多少?
4.一个正方体的棱长的和是48cm,这个正方体的体积是多少?
教材分析
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
教学过程
教学环节
教学活动
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】平行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1)你把平行四边形转化成什么图形?
(2)什么变了,什么没变?
(3)平行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的`宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)
【追问】要求平行四边形的面积,必须知道什么?
(一)基本技能训练
(1)计算平行四边形的面积
(2)蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24平方厘米的平行四边形
2.如果这个平行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
教学目标:
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教学过程:
一、复习旧知
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形下载)
二、设疑引入
教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的'面积大还是小?相差多少呢?要想得到准确地结果该怎么办?
板书课题:梯形面积的计算
三、指导探索
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式
提纲:
2.(演示课件:拼摆梯形下载)
电脑演示转化推导的全过程。
3.由学生自己说明“梯形面积=(上底+下底)×高÷2”的道理。
4.概括总结、归纳公式。
提问:(1)(上底+下底)×高求的是什么?
(2)为什么要除以2?
板书:梯形面积=(上底+下底)×高÷2
第二部分,应用公式计算。
1.出示例1、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
2.提问:已知什么?求什么?怎样解答?
3、列式解答
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
四、巩固练习
1、计算下面梯形的面积。
2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。
3.下面是一座水电站拦河坝的横截面图,求它的面积。
五、质疑总结。
1.师生共同回忆这节课所学习的内容。
提问:求梯形的面积为什么要除以2?
求梯形面积需知哪些条件?
2.引导学生质疑,组织学生解题。
六、板书设计
设计说明
1.创设一定的生活情境,引出可探索的“数学问题”。
“生活即教育”,数学知识只有来源于生活实际,学生的学习才有可能是积极的、主动的。本节教学设计从给学校的长方形宣传栏刷油漆引入小数乘小数的计算,让学生运用转化思想初步经历小数乘小数的计算方法的探究过程,并让学生在此过程中感受到生活中的许多问题都可以用小数乘法来解决,加深数学与生活的联系。
2.尝试计算、自主探索,主动获得小数乘小数的算理。
《数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的.经验为基础”。本节教学设计联系原有的学习经验,首先给予学生充分的空间和时间,让学生独立尝试小数乘小数的计算,重点放在对小数乘小数的算理的理解上,不仅要让学生学会怎么计算,更要让学生理解为什么要这么计算。
3.运用计算法则,联系实际解决问题。
数学来源于生活,必然又回归于生活并高于生活。在学生初步掌握小数乘小数的计算法则与算理的基础上,应用生活化的练习让学生的知识得到系统的整理与巩固,并不断拓展、提高学生的思维能力。在学生掌握了小数乘小数的计算方法后,通过不同层次的习题进行巩固。
课前准备
教师准备PPT课件课堂活动卡学情检测卡
教学过程
⊙创设情境,引入新课
(播放课件)我们的校园多美呀!有高大的教学楼、宽阔的操场。(课件出示正在刷油漆的宣传栏)看!工人叔叔正在给宣传栏刷油漆,可是有个问题却难住了他们。你们能帮助他们解决吗?(课件出示教材5页例3)
设计意图:创设生活情境,从给学校的宣传栏刷油漆的场面引入小数乘小数的计算,既调动了学生的学习兴趣,又渗透了数学来源于生活,且应用于生活的思想。
⊙探究新知
1.教学例3,初步掌握小数乘小数的计算方法。
(1)理解题意。
师:要想知道一共需要多少千克油漆,必须知道什么条件?(宣传栏的面积)
师:那么,宣传栏的面积怎么计算呢?
预设生:因为宣传栏是一个长方形,所以我们只要根据长方形面积的计算公式就可以计算出来。
(2)尝试列式。
师:怎么列式呢?(2.4×0.8)
(3)揭示课题。
(教师指着算式)请同学们观察这个算式,它有什么特点?(因数都是小数)
揭题:这就是我们这节课要学习的小数乘小数。(板书课题)
(4)合作探究。
师:两个因数都是小数,应该怎么计算呢?下面请同学们在小组内讨论一下这道题的计算方法。
(学生在小组内讨论,并汇报)
预设生1:可以利用分米和米之间的进率进行计算。
将“m”改写成“dm”。
2.4m=24dm0.8m=8dm
用竖式计算:
将积的单位“dm2”改写成“m2”:192dm2=1.92m2。
教材分析
本节课的设计思想完全遵循课程大纲按课时要求编写教案,它以素质教育为指导思想,采用现代的教学方法,结合学生的年龄和心理特点,力求做到重难点突出,精心的教学设计。
学情分析
在学习了求积的近似数的方法、小数除法后,学生再来学习本节课的内容,不会感到太困难。教师尽可能的创造学生互相学习、互相讨论的机会,发挥学生的主观能动性,让每位学生突破自己,展示自己,同时应重点引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。同时,引导学生善于观察、发现求商的近似数的简便方法。
教学目标
1.知识与技能:
(1)使学生理解商的近似值的意义。
(2)掌握“四舍五入法”取商的近似值的方法,能正确的按题意求商的近似值。
2.过程与方法:能根据实际情况进行求近似值。
3.情感、态度与价值观:培养学生数学知识,在实际生活中灵活应用的能力。
教学重点和难点
1、教学重点:理解商的近似值的`意义,掌握“四舍五入法”取商的近似值的方法。
2、教学难点:能根据实际情况求商的近似值。
教学过程
一、复习导入
1.口算。
0.63÷70.24÷0.30.65÷0.13
72÷1441.44÷0.65.6÷0.08
2.按“四舍五入”法,将下列各数保留一位小数.
1.4835.3478.7852.864
3.按“四舍五入”法,将下列各数保留两位小数.
7.6024.0035.8973.996
做完第2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、探索新课
1.教学教科书P23页例7.
(1)出示例题7.(提问学生:一打是多少个羽毛球?)
(2)要求根据书上提出的信息列式计算.列式19.4÷12
(3)依据单价=总价÷数量
(4)依据题意要求,取商的近似值。
2.小结:
在日常生活中,小数除法所得的商也可以根据需要,采用“四舍五入法”保留近似值,保留时,一般只除到需要保留的小数位数多一位就可以四舍五入了。
三、巩固练习:
1.求下面各数的近似数:
3.81÷732÷42246.4÷13
2.做第23页“做一做”中的题目.
(1)教师让学生独立按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
(2)集体订正
四、课堂小结:
(1)提问:今天我们学了那些内容?你有那些收获?(出示课题:商的近似值)
(2)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
将学生分成6组,每组4人,合作探究,互相交流,探讨真知。
然后让各小组汇报交流,达到生与生的交流,师与生的交流。
随后,教师进行总结。
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了
五、布置作业:
练习四第10、11、13题。
教学目标:
1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的.解答。
教学重点:
理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学过程:
第一课时
(一)复习整理学过的面积公式,完成下表。
(二)需要注意的地方
1.弄清图形,选择公式。
2.找对应的底和高。
3.注意单位换算。
4.三角形和梯形的面积别忘了除以2。
5.解决问题时,弄清面积与其他数量的关系。
6.看青组合图形是由哪几个简单图形组成的,找简单的解决方法。
7.已知面积,求底或高可以用方程解。
(三)计算下面图形的面积
(四)组合图形的计算方法:分割法或添补法(转化):分解成简单图形。
(分割法)
小明家打算装修,要给客厅(如下图)铺上瓷砖,求客厅面积是多少?
方法一:把组合图形分割成两个
长方形。
43+37
=12+21
=33(cm2)
方法二:分割成一个长方形和一个正方形。
46+33
=24+9
=33(cm2)
第三种方法:分割成两个梯形。
(3+7)32+(3+6)42
=15+18
=33
第四种方法:分割成一个长方形和一个正方形。
76-33
=42-9
=33(cm2)
归纳:方法一、二、三是分割法;方法四是添补法
第二课时(完成练习)
四、作业
复习本单元知识点及错题
教学目标:
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2、好,下面谁来说一说你找到了哪些学过的图形?
3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的.直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽
平行四边形的面积=底高
S=ah
S=ah或S=ah
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解平行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和平行四边形图片、剪刀、平行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)
出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究平行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
②填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的`?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把平行四边形转化成长方形后,()没变。因为长方形的长等于平行四边形的(),宽等于平行四边形的(),所以平行四边形的面积=(),用字母表示是()
2、求平行四边形的面积必须知道平行四边形的()和()。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各平行四边形的面积
A、底12米,高3米:
B、高4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的平行四边形,不一定等底等高。
(2)画平行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,平行四边形面积就一定相等。
2.等底等高的平行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
平行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
1、教学设计
学科名称:折纸(小学数学五年级)
2、所在班级情况,学生特点分析:
所任班级五3班共有学生46人,男生21人,女生25人,大部分学生聪明好学,学习主动性比较强,上课能积极回答老师的提问,具有较强的探究能力,对数学学习兴趣浓厚。但有个别学困生学习采取应付态度,作业不能按时完成。
3.教学内容分析:
这一节课是北师大版第九册第四单元《分数加减法》折纸的第一课时课型新授课,本节课是学生学习同分母分数加减法的基础上进行学习的,让学生通过直观的操作活动,理解异分母分数加减法的算理就是先通分然后同分母分数加减法的法则进行计算。
4.教学目标
知识与技能
(1).通过直观的'操作活动,理解异分母分数加减法的算理。
(2).能正确计算异分母分数的加减法。
过程与方法
通过直观的操作活动,是学生探索异分母分数加减法的算理。
情感态度与价值观:运用分数知识解决实际问题。
教学重点:异分母分数加减法的计算法则。
教学难点:把分母不同的分数通过通分化成分母相同的分数。
教具、学具:学生准备几张用来折纸的纸张。
教学方法:自主探究合作学习法
5、教学过程
一复习引题
1.在三年级时我们就已经学过了同分母分数加减法,大家还记得怎么计算吗?
2.先看书上的折纸活动
师:要知道他们两个人一共用了这张纸的几分之几?要怎样列式
二、新授
1.估一估他们用了这张纸的几分之几?
2.再算一算他们用了这张纸的几分之几?
3.重点教学加的计算教师引导学生理解要先通分然后才能计算的算理。
口算。
2/7+3/7=5/6+1/6=13/14-3/14=1/12+5/12=
同桌的两个同学也像那两个同学一样折一折纸,并列出算式:
1/2+1/4=
通过折纸来估计
小组讨论书上两幅图的计算方法,理解通过通分把异分母分数化成同分母分数就是解决异分母分数不能相加减的办法。
回忆同分母分数加减法的计算方法。
通过折纸学生直观的认识到异分母分数加减计算的学习必要性。
通过折纸活动让学生理解不是简单分母与分母,分子与分子的相加。
4.总结异分母分数加法的计算法则。
5.自学异分母分数减法
学生自学,教师巡回指导。
三、巩固练习
Ρ65练一练
四、全课总结
学生讨论刚才的计算方法,并总结:异分母分数相加,要先通分,化成同分母分数,再把它们相加。
学生自己看书学习
第(2)题小红比小明多用了这张纸的几分之几?
根据加法的法则自己总结法则。
学生独立完成第1题教师指名回答说说是怎么想的
在独立探索中掌握异分母分数减法的计算方法。
五、作业布置:
板书设计:
折纸
异分母减法的计算方法:
分母不相同的分数相加减,要先通分,化成相同的分母,再加减。
教学目标:
1.会利用乘法分配律、乘法结合律对含有字母的式子进行化简。
2.通过实际的动手操作,能够熟练的化简含有字母的式子。
3.培养同学们实际动手操作的能力,培养同学们养成做事认真的好习惯。
教学重点:
会利用乘法分配律、乘法结合律对含有字母的式子进行化简。
教学难点:
1.会用语言描述化简的思考过程。
2.一个式子的多次化简。
教学过程:
【片断一】:化简的.意义
教师出示例题:当a=65时,求7a+3a的值。(学生尝试自主完成)
师巡视,发现学生的两种做法,分别请学生板演。
解法一:当a=65时,
7a+3a
=765+365
=455+195
=650
解法二:当a=65时,
7a+3a
=10a
=1065
=650
师:哪种方法比较简便?
生1:第一种。
生2:第二种。
师:请说明你的理由。
生1:第一种只要按顺序代入计算,不要动脑筋。
生2:我认为第二种方法简便,因为第二种方法通过先化简后,再代入比较方便。
生3:反对,化简化错了就不行了,还是第一种方法好。
师:知识之间是相互紧密联系的,如果化简知识学好了,当然用第二种方法算简便,如果老师把这道题改变一下,48a+152a,用第一种方法做方便吗?
学生在争论中达成了共识。
教学中,应组织学生学会从多种算法中分析,辨别出最佳或较佳的方法,当然不应是教师主观指定的算法。通过让学生主动参与争论辨析,旁征博引,从中感悟出最优化解题方法,培养学生良好的思维习惯。
【片段二】:分层练习
一、基本练习
1.可作一些代入数值的单项练习。例如,填空:当a=2,b=3时,3a+2b=()。
学生反馈:绝大多数学生都没问题,只有2人计算错误。
2.完整地让学生做一些题目。重点是先化简再代入数值进行计算,并可引进负数的计算。如练一练的第2题,当b=5时,求2b-7b的值。
学生反馈:有个别学生没有注意化简,直接代入求值。
二、深化练习
可练习两问的应用题:第一问要求写出含有字母的式子表示数量关系。第二问给出字母所取的值进行计算。利用复习准备题2,补充当t=350时,求共收款多少元?上半月比下半月多收款多少元?
再做练习十的第6题和第8题。
学生反馈:部分学生的格式存在问题。
巩固练习是发展学生独立思维的一种方式,学生掌握了新知后要进行多层次的练习,以形成技能和提高能力。这里的分层练习讲究练习的坡度和层次,既照顾大多数学生的接受能力,从中也起到巩固、深化的作用。
第三层次的练习目的是综合运用用字母表示数、式子的化简和求值方法的知识。在练习时,有些学生会把第二问中给出的字母的值放入第一问中,直接列出算式,而忽略了先用字母表示数的要求。我时时提醒学生注意、并说明
用字母表示的是数,在代入式中进行计算后,得出的得数后面不要写上单位名称,到答句时再注明单位名称。学生通过大量的练习,基本掌握了计算方法和书写格式,但部分学生还是会在计算中出现错误,今后还是有必要加强这方面的练习。
一.小数乘法
教学内容:
1.小数乘整数
3.小数乘小数的验算
教学目标
教学过程
教学过程
二、小数除法
单元要点分析
1.小数除以整数
2.除数是整数的小数除法(二)
第三课时:除数是整数的小数除法的验算
2.一个数除以小数
2.练习课
3.求商的近似值
5.用计算器探索规律
教学目标
1.知识与技能:让学生利用计算器独立探索,发现规律,再用观察来完成各题的商。
2.过程与方法:用先独立发现后小组交流的`方式进行教学。
3.情感、态度与价值观:让学生通过观察、对比、分析、发现规律,体验成功的喜悦。
教学重点:运用计算器计算,发现算式的规律。
教学难点:运用规律直接写出商。
教学过程
一、复习
1.什么叫循环小数?请举3个例子。
2.小数分为几类?(有限小数和无限小数)
二、新授课
1.教学教科书第29页的例题10.
(1)出示例题10:1÷11
2÷11
3÷11
4÷11
5÷11
先让学生用计算器算出1÷11,则计算器上显示0.090909091.由于1÷11的结果是一个循环小数,所以0.090909091是一个近似数,而这道题采用的是符号,所以我们要把近似数还原为循环小数:0.0909。
1÷11=0.0909
2÷11=0.1818
3÷11=0.2727
4÷11=0.3636
5÷11=0.4545
(2)观察:以4人为一小组讨论,这五道题的结果有什么特点?
分析:
1÷11的循环节是09
2÷11的循环节是18
3÷11的循环节是27
4÷11的循环节是36
发现:除数不变,被除数扩大2倍,循环节也扩大2倍,被除数扩大3倍,循环节也扩大3倍
(3)根据上面的规律,直接写出下面几题的商。
6÷11=0.5454
7÷11=0.6363
8÷11=0.7272
9÷11=0.8181
2.完成教科书第29页的“做一做”。
(1)学生先用计算器算出前4题的结果。
3×7=21
3.3×7=22.11
3.33×7=222.111
3.333×7=2222.1111
(2)观察:第一个式子中,两个因数的位数和是多少?积的位数是多少?积是由那两个数字组成的?积的小数在哪里?
再用同样的方法观察第三式和第四式。
(3)根据前几题的规律,得出后两题的结果。
3.3333×6666.7=22222.111111
3.33333×66666.7=222222.1111111