首页 > 范文大全 > 计划安排

有机高分子材料的特性(6篇)

发布人:网络 发布时间:2024-04-01

有机高分子材料的特性篇1

关键词:无机非金属材料;建筑节能;应用

Abstract:inmodernenergystructurefoundinresearchandanalysis,buildingenergyconsumptioninenergyconsumptionplaysanimportantproportion.InordertocarryoutthesustainabledevelopmentstrategyinChinaandpromoteourcountry'senergyapplicationstructureadjustment,themodernbuildingmaterialintheengineeringdesignofenergy-savingtechnologyapplicationincreasing.Thispapermainlyonourmodernbuildingenergyconservationprojectintheapplicationofinorganicnon-metallicmaterialsarealsodiscussed.

Keywords:inorganicnon-metallicmaterials;Buildingenergyefficiency;application

中图分类号:TE08文献标识码:A文章编号:

0.序言

随着我国城市建设的快速发展、房屋建筑的增加、建筑热舒适性要求的提高等原因,使得我国的建筑耗能也逐年加大,每年房屋建筑总能耗占全国总能耗的45%,如果继续传统的建筑设计方式,会造成较大的建筑材料消耗。因此,我们应该广泛选用建筑节能材料,而在这些材料中无机非金属材料又具有很强的节能优势。无机非金属材料包括除金属材料、高分子材料以外的几乎所有材料,这些材料主要由一般陶瓷玻璃、耐火材料、水泥以及特种陶瓷等新型无机工程材料。一般无机非金属材料具有耐高温、高硬度和抗腐蚀等优良工程性能,其主要缺点是抗拉强度低、韧性差。无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。

1无机非金属材料在建筑工程中的应用优点

传统的无机非金属材料材料品种繁多,主要是指大宗无机建筑材料,包括水泥、玻璃、陶瓷与建筑(墙体)材料等。其产量占无机非金属材料的绝大多数。建筑材料与人们的生活质量息息相关。传统的无机非金属材料工业是能源消耗大户,在世界能源日益短缺的今天,如何生产节能、降耗,以及如何生产出高质量的建筑节能、保温产品是建材工业发展的重要趋势。选择资源节约型、污染最低型、质量效益型、科技先导型的发展方式。新型墙体材料、高质量门窗、中空玻璃将大量应用;向着提高材料性能、使用寿命的方向发展。低寿命设计、大量重复建设已经严重制约城市建设的发展。现代化建筑需要高性能建筑材料的支持,而提高建筑的耐久性又对建筑材料的使用寿命提出了更高的要求。在建筑工程中,把用于控制室内热量外流的材料称为保温隔热材料,把防止室内热量外流的材料称为隔热材料。绝热材料的优劣主要由材料的传导性能的高低决定。材料的传导性能越差,其绝热性能就好,反之则越差。

在现代社会中已形成了三大类绝热材料:有机绝热材料,无机绝热材料,金属。而有机绝热材料相对无机绝热材料来说受到很多限制,与其它构件的结合性差,耐腐蚀性弱,合成浪费能源,不稳定;而且有机性材料的副产物太多,大多对人体又有害,使用中承载力不强,防火性能差,易老化,耐候性也很差等原因受到许多限制。金属类绝热材料的使用相对来说也没有无机非金属材料广,因为金属材料与无机材料相比来源也要窄得多,与其它材料的结合也没有无机非金属材料好,耐腐蚀性也不强,在雷电多发区受到苛刻的技术要求和设计要求。因此,与上述两种材料相比优势化较大的就是无机非金属材料,这类材料基本都有上述两种材料的优点外还有:材料来源广,生产工艺简单,耐热性强,防火性强,承载力强,而且耐火性也十分好。故无机非金属材料在现代建筑工程中的运用前景也就强于其他两种材料。在建筑保温隔热运用中,因其多用于建筑维护结构及其外表面,既能使建筑的保温性能和隔热性能都得到保证。又能对建筑起到保护作用,使建筑物避免直接暴露于大气环境中;使其免受大气环境中的各种腐蚀和破坏作用。

现有的其他保温隔热材料中有岩棉、人造轻质硅酸盐、非连续的絮状纤维材料,质地松软,化学稳定性好,耐酸碱,弹性好。

膨胀蛭石,有金云母,黑云母变质而成,是一种复杂的铁,镁含水硅酸盐类矿物;是性能良好的建筑绝热材料。

硅藻土,由硅藻的硅质的细胞壁的一种生物化学沉积岩组成。质地松软,多孔而轻,易研磨成粉末,具有吸水性,不溶于酸,碱。是建筑工程中常用的轻质、绝热和隔声材料。

木纤维,也称为工程纤维,是一种天然纤维,成化学惰性,无生理毒性,在建筑保温隔热工程以及在内外墙腻子防水涂料和复层涂料中运用,能起到防裂、触变、憎稠等多种作用。因此对各种粘贴式保温隔热有着重要作用。

泡沫玻璃是石英砂矿粉或碎玻璃为基料,加入发泡剂、促进剂等添加剂,经超细粉碎和均匀混合形成配合料,经融化、发泡、退火而形成的内部充满封闭式气泡的材料。属于无机玻璃之和封闭气孔构成的多孔泡沫类材料。它的密度低、导热系数小、不透湿、吸水率小、不燃烧、不霉变、机械性能高、加工方便、耐化学腐蚀、本身无毒、性能稳定。既是保温材料又是隔热材料,能适应极冷到较高温度范围等特性,同时耐久性好、质硬、表面强度高、可切割成型,施工方便,可成彩色材料;因此还具有独特的装饰功能。但是气泡的大小、匀称度等都会影响其特有的功能。出现凹格、开裂、表面不平等。介于其优点多,在无机非金属材料中是很有发展潜能的。

2无机非金属材料的分类

2.1半导体材料

半导体是指室温电阻值处于导体(电阻值约10~4Ωm)和绝缘体(≥1010Ωm之间的材料,它已成为当前无线电电子技术、计算机技术和新能源利用技术等高新技术中不可缺少的重要材料。目前大多数半导体材料还是无机半导体材料,它的大致分类为元素半导体、掺杂半导体、化合物半导体、缺陷半导体。

2.2高技术晶体材料BGO

BGO是Bi2O3-GeO2系化合物锗酸铋的总称,目前往往特指其中的Bi4Ge3O12。这是一种闪铄晶体,无色透明:当一定能量的电子、γ射线或重带电粒子进入时,它能发出蓝绿色的荧光,记录荧光的强度和位置,就能计算出入射电子等粒子的能量和位置。

有机高分子材料的特性篇2

关键词:可降解高分子材料;光降解;生物降解;光-生物降解

随着经济的发展和人们生活节奏的加快,塑料饭盒、塑料袋等一次性产品开始频繁出现在人们的日常生活中,它们在给人们的生活带来便利的同时,也因其非自然降解性造成了极大的环境问题,即“白色污染”。“白色污染”既是一种视觉污染,也会影响土壤、空气、水体等的质量,因此努力合成并推广使用可降解高分子材料成为当务之急。按照降解机理,可降解高分子材料可分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分析材料三大类。

1.光降解高分子材料

光降解高分子材料的特征是含有光敏基团,可吸收紫外线发生光化学反应,在太阳光的照射下,发生分子链的断裂和分解,由大分子变成小分子。

向塑料基体中加入光敏剂是目前使用比较多的制备光降解塑料的方法。光降解引发剂可以是过渡金属的各种化合物,如:卤化物、脂肪酸盐、酯、多核芳香族化合物等。很多学者都发现TiO2对聚丙烯的光降解有明显的催化作用,刘青山等人[1]分析了加有锐钛矿型纳米二氧化钛的聚丙烯纤维在人工加速紫外光降解和自然光降解过程中拉伸断裂伸长率和表面形态的变化情况,得出锐钛矿型纳米TiO2可作为聚丙烯的一种高效光敏剂的结论。除了TiO2,还有很多其它光敏剂,如硬脂酸铈、硬脂酸铁、N,N-二丁基二硫代氨基甲酸铁、硬脂酸锰等均对聚乙烯薄膜有显著的光敏化作用效果。

在高分子中添加光敏剂制得改性高分子虽然能降解,但只是部分降解,而化学合成的羰基聚合物、Et/CO等,则能完全降解。一氧化碳和烯烃的交替共聚产物——聚酮,因为分子链中含有大量以酮形式存在的羰基,容易在紫外光的照射下发生光降解,羰基键附近的碳链断裂生成酮类、烯类及一氧化碳等低分子物质并返回到物质循环圈中,不存在环境污染,是一种新型的环境友好材料[2]。且有实验证明,分子量大、结晶度低的聚酮光降解性能更好。

2.生物降解高分子

生物降解材料包含完全生物降解高分子和生物破坏性高分子,前者是指在微生物作用下,在一定时间内能完全分解成二氧化碳和水的化合物;而后者在微生物作用下,仅能被分解成散落碎片。

2.1淀粉降解塑料

淀粉是天然高分子化合物,具有可再生、价格便宜、生物降解性等优点,成为近年来研究的热点。淀粉降解塑料泛指组成中含有淀粉或其衍生物的塑料,发展至今已经过了四个时期:填充型淀粉塑料,光/生物双降解型塑料,共混型塑料和全淀粉热塑性塑料。

填充型淀粉塑料一般是烯烃类聚合物中加入廉价的淀粉作为填充剂,其中淀粉含量在10%30%,仅淀粉能降解,被填充的PE、PVC等塑料需要几百年才能达到完全生物降解。光/生物双降解型是由光敏剂、淀粉、合成树脂及少量助剂等制成,其降解机理是先降解的淀粉可使高聚物母体变得疏松,增大表面/体积比,同时光敏剂、促氧剂等物质被光、热、氧引发,发生光氧化和自氧化作用,导致高聚物分子量下降并被微生物消化[3]。接下来人们发现,通过共混能解决淀粉粘性高、抗湿性低及与一些聚合物不相容等缺点,于是开始将淀粉与聚烯烃类等一些不可降解聚合物混合来提高淀粉的强度,但这类产品不能完全降解;后来便试图将其与PCL、PEG等可降解聚合物共混,制得了很多可完全降解材料。全淀粉热塑性塑料含淀粉70%-90%,其余组成是一些可光降解的加工助剂,使用后能在环境中完全降解,但天然淀粉不具有热塑性,必须先利用物理场作用使其分子结构无序化后才能在塑料机械中加工成型。

2.2化学合成型生物降解高分子[4]

酯基在自然界中容易被微生物或酶分解,所以常采用含有酯基结构的脂肪族聚酯来合成生物降解高分子材料,工业化的有聚乳酸和聚己内酯。

聚乳酸是以淀粉、糖蜜等为原料,发酵制得的易生物降解的热塑性材料,因乳酸存在一个羟基和一个羧基,可通过缩聚反应直接转换成低分子量聚酯,再通过选择适宜的聚合条件来合成目标分子量的聚合物。聚乳酸具有良好的生物可降解性、相容性、透明性、机械性能及物理性能等,被视为新世纪最有发展前途的新型包装材料。聚己内酯也是脂肪族聚酯中应用较为广泛的一种可降解高分子材料,通过己内酯的开环聚合制得,是一种半结晶型聚合物,室温下为橡胶态,具有很好的柔韧性、加工性和生物相容性,土壤中掩埋一年后能被微生物降解掉95%左右,降解产物是二氧化碳和水,被认为是环境友好包装材料。

2.3微生物合成的完全生物降解高分子[21-26]

微生物合成高分子材料是通过用葡萄糖或淀粉类喂养,微生物在体内发酵合成的一类有机高分子材料,主要包括微生物多糖、微生物聚酯和聚氨基酸等。

γ-聚谷氨酸就是利用微生物发酵生成的一种多功能生物高分子,具有生物相容性、可降解、无毒副作用等特性,可用于制备高吸水性树脂,作为一种治疗骨质疏松的重要载体、药物缓释材料,吸附重金属等,具有广泛的应用前景[5]。聚羟基脂肪酸酯是一类由很多细菌在非平衡生长条件(如缺氧、磷等)下合成的线性聚酯,可作为碳源和能源的贮藏性物质,增强细菌的生存能力,在自然界中可被微生物和特定的酶降解为二氧化碳和水,并且具有热可塑性、生物可再生、生物相容性、光学异构性等,可作为生物医用材料、日常消费用塑料制品、生物可降解包装材料、生物能源,已成为可降解生物材料领域研究的热点。

3.光/生物双降解高分子材料

顾名思义,光/生物双降解高分子材料同时具有光、生物双降解功能,将光降解机理与生物降解机理结合起来,可以使二者优缺点互补,达到更好的降解效果。其制备方法主要是在通用高分子材料中添加光敏剂、自动氧化剂、抗氧剂和生物降解助剂等。目前研究比较多的有淀粉和光敏剂光降解树脂合成的光/生物双降解淀粉塑料及可控降解剂共混改性法制得的改性可控光/生物双降解聚丙烯纤维制品等。光/生物双降解淀粉塑料前面已提过,此处不再赘述,而可控双降解聚丙烯纤维制品凭借着其可控降解性、存放性、无毒性等众多优点,必将具有巨大的发展前景。

4.结语

随着“白色污染”的日益加重和石油资源的日益枯竭,加大对高分子废弃物的回收利用率和研制出高效的降解技术都是有效的解决途径,但只有研究出可自然降解的高分子材料才能从根本上解决这些问题,且光-生物双降解高分子材料凭借着其独特的优势将会成为今后的研究重点之一。(作者单位:郑州大学材料科学与工程学院)

参考文献:

[1]刘青山,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-12.

[2]邹丽萍.绿色高分子材料聚酮的合成研究[D].昆明:昆明理工大学,2007:1-5.

[3]范良兵.淀粉降解塑料的制备及性能的研究[D].广东:华南理工大学,2010:1-8.

有机高分子材料的特性篇3

关键词:生物医学材料;口腔临床;临床应用

1.前言

口腔生物医学材料具有比较广泛的应用范围,不只是在因先天或后天原因导致牙体组织和颌面器官缺损的修复方面进行应用,还可能在鉴别诊断口腔疾病方面具有辅助作用。生物医学材料可实现对缺损组织与器官的修复和置换,恢复组织或器官的正常功能。随着迅猛发展的科技水平,口腔生物医学材料的制作方法也具有明显的改进,日益推出复合型与功能型形式各样的生物医学材料,并日益优化其性能。

2.资料与方法

通过对生物医学和生命科学有关文献的数据库的检索,并进行较深入地分析。结合临床口腔生物医学材料应用的特点,比较分析有关数据。口腔生物医学材料基础性研究、临床应用的生物医学材料等相关文献都是重要依据,并将与目的无关的研究结果予以排除。

3.结果

按照材质类别可将口腔生物医学材料分为金属、高分子及非金属生物复合材料三类。金属类材料在临床口腔生物材料中是最早应用的一类材料,这类材料优点是具有较高强度、较强韧性、获取容易等,在临床中应用广泛。还可结合其成分将金属类材料分为纯金属、合金及特种金属三种,在临床中纯金属类材料应用不多,应用较多的主要是合金和特种金属。合金类金属材料由不少于两种金属元素组成,尽管其延展与抗压等物理性能低于纯金属材料,但在应用中生物安全性较高,所以在临床中具有比较广泛的应用。钴基合金材料目前广泛应用的合金类材料,主要有钴铬钨镍和钴铬钼合金两类,具有抗腐蚀性较强的性能,高于单一金属材料40倍。但在加工制作过程中比较烦琐,所以相对具有比较昂贵的价格。此外,机械性能也比纯金属类材料高,通常在替换颞下颌关节与颌面部内固定大面积骨折中应用较多。钛合金与上述金属合金材料相比较,具有较高的机械性能和相容性,在人体植入后不会产生排斥反应和毒副作用,生物相容性较好。通常在种植牙基桩制作、固定骨折及骨缺损替代植入性材料中比较常用。但在使用中金属材料也具有不足之处,诸如在使用中因人体具有比较复杂的内部环境,因人体内长期存在金属材料部会造成离子向体内微渗入,进而产生较大的副作用和毒性。

在现代口腔生物医学材料中非金属生物复合材料也是其中的重要组成部分,主要有以下三种。一是生物活性陶瓷,该材料是表面具有生物活性和吸附性的一N陶瓷,通常具有羟基,为多孔形,具有较高的孔隙率。在体内生物活性陶瓷能够降解吸收,通常在生物体内用于骨诱导材料对新生骨生长具有一定的诱导作用。在实际应用中骨传导性与诱导性良好,所以通常该材料可用于修复骨缺损的一种支架材料,在支架的周围利用填充材料的良好生物学活性充填覆盖,以实现对缺损的修复作用,并使材料增加生物相容性。二是惰性生物陶瓷材料,其主要成分是氧化铝和氧化锆,硬度高,生物相容性好,所以通常在内固定骨折中应用较多,在制作口腔全瓷牙内冠中也比较常用。三是复合树脂,主要混合有机树脂基质和无机填料形成,在特定条件下是能够引发化学性反应的一种修复材料,在修复小面积牙体缺损时比较适合。在临床中目前主要应用的有光固化、化学固化及复合固化等树脂类材料,该材料具有较强的可塑性、良好的仿真性、较高的生物相容性、比较耐磨等优势。

在临床中高分子类材料是一种比较广泛应用的材料,稳定性强,聚乙烯和聚丙烯是其主要成分。与其它材料相比较,该材料在人体中不能降解产生离子,因此不具有毒性。抗冲击性和抗摩擦性也较强,所以在替换人工关节中应用比较广泛。高分子类材料中的硅橡胶材料耐高温、腐蚀及透气性较高,所以在制作颌面部复体及口腔印模精确制取材料中应用较广。另外,该材料可降解,经一段时间后可形成小分子化合物而随人体基础代谢排出患者体外。

4.讨论

通过研究分析生物材料有关文献资料,在口腔临床生物医学材料中选取金属材料、高分子、生物复合材料三大类分别进行研究。大部分高分子材料与生物复合材料都是由不少于两种材料构成,对这类材料进行制作时,可利用相关技术对材料微观构造进行改变,使材料特性和优点得到充分发挥,对不足之处进行有效弥补,对生物材料赋予新的生物特性。材料的生物相容性和机械强度较高,具有较强的耐腐蚀性,在特定环境下能够降解吸收,在临床应用中完全满足。在高分子材料与生物复合材料中,我国开展相关的研究相对较晚,并在研究初期发展相对较为缓慢,但经过近年来的不断发展,已由最初的盲目效仿逐渐发展到自主研发,由质变迅速发展发展到量变。口腔医用生物医学材料目前在我国已逐渐由传统的单一功能、非专一化、低效逐步发展为功能完善、复合化、专业化及高效,发表的生物医学材料的相关文献也跃居世界第二。

随着医学技术及材料技术的快速发展,口腔生物医学材料也得到了前所未有的发展机遇。目前在临床研究中已逐渐由常用的无机材料转变为有机材料,有机类生物材料在开展较多研究的就是多糖类物质。天然多糖类物质中壳聚糖属于其中一种,其生物相容性良好,抗菌性能优异。通常该类材料被用于对各种材料进行塑造以便于长入细胞和将应力传递至骨与骨之间。壳聚糖类物质因其生物相容性和细胞黏附性较好,而被广泛用于各种细胞因子和药物载体,实现对遗传信息进行传递以及相关疾病的临床治疗。

5.结语

综上所述,口腔生物医学材料近年来已由传统的单一型材料逐渐过渡到新的复合型、智能型和功能型材料,生物医学材料可实现对缺损组织与器官的修复和置换,恢复组织或器官的正常功能。随着迅猛发展的科技水平,口腔生物医学材料的制作方法也具有明显的改进,日益推出复合型与功能型形式各样的生物医学材料,并日益优化其性能。相信在不远的将来,这种材料在组织工程学及口腔临床应用中将得到迅速发展。

参考文献:

[1]殷武雄,李玲.医用骨修复碳素增强生物复合材料的研究进展[J],化工新型材料,2015.10

[2]欧阳建安,王大平.多孔钽应用于骨科的生物材料特性研究进展[J],中国临床解剖学杂志,2014.8

[3]黎淑婷,黄华,周永明.不同表面处理对聚乳酸可吸收桩与树脂核间粘结性能的影响[J],牙体牙髓牙周病学杂志,2015.4

[4]余森,于振涛,张强等.医用钛合金表面载银抗菌涂层的研究进展[J],稀有金属材料与工程,2014.7

有机高分子材料的特性篇4

论文摘要:充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。这里主要介绍纳米材料在化工领域中的几种应用。

纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

一、纳米材料的特殊性质

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。

(二)磁学性质

当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

二、纳米材料在化工行业中的应用

(一)在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

(二)在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

(三)在精细化工方面的应用

精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

参考文献

[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.

[2]严东生,冯端,材料新星?纳米材料科学,湖南科学技术出版社,1998年.

有机高分子材料的特性篇5

材料学专业毕业生的就业面比较广,主要就业方向包括计算机、金融、教育和科技咨询等领域。材料专业的毕业生可以从事高分子材料加工、高分子材料合成、信息材料、医用材料、新型建筑材料、电子电器、汽车、航空航天、贸易等工作,还可以进入研究院所、高等院校和海关、商检等部门工作。

材料学专业的分类

通常来讲,材料分为高分子、无机非金属、金属三大种类。从学科的角度来讲,不同的学校所开设的材料学专业也不相同。除了传统意义上的材料科学专业、有机高分子材料专业、无机非金属材料专业、金属材料专业之外,一些学校还增设了高分子复合材料专业、机械材料专业等。以北京航空航天大学的材料科学与工程学院为例,材料科学与工程学科为国家一级重点学科,下设材料科学系、材料物理与化学系、材料加工工程与自动化系、高分子及复合材料系等。

材料学专业就业知多少

从就业角度来讲,金属材料专业作为一门基础学科,应用面广,就业面也相对较广。复合材料因为博采众长,在性能上结合了各种材料的优势,作为一种新型材料广泛应用于生物、航天领域,就业前景也很好。

总体就业前景分析

其一,材料学专业性强,受国家重视,高技术人才供不应求。现代材料学科更注重研究各类材料及它们之间相互渗透的交叉性和综合性特点。经历近半个世纪对材料微观结构和宏观性质相关机制的探索和认识,材料学研究的范围得到巨大拓展,一些具有特殊功能的材料日益受到重视并快速发展,也为材料学的发展提供了前所未有的机遇和空间。这就需要有一定专业知识的人才投入到科研工作中,攀登材料科学的高峰。

其二,随着时代的进步,新型材料运用更加广泛,现代技术的发展也需要很多新型材料的支持。根据我国当前及未来发展的实际情况,材料学专业人才在各个行业需求量的增加为此专业的学生提供了很好的就业机会。

研究生阶段课题方向的选择很重要

据中国科学院学高分子材料专业研究生的王芬(化名)同学介绍,全班40个人,男多女少。虽然传统意义上是要去中石油、中海油等对口单位,但目前她投简历的对象主要是民营企业,这些企业对研究方向没有特别硬性的规定。

找工作的这段时间以来,王芬觉得材料学所有的专业中,金属材料学专业的就业面还比较宽。找工作时,用人单位会看重求职者的教育背景、研究方向以及课题方向,尤其当面试岗位是专职科研人员时,单位对专业方面的考量会针对毕业设计提出,因此研究生阶段的课题选择非常重要。她建议大家认真对待毕业设计。

脚踏实地的研究精神不可少

航天某院工作人员高女士建议,在学校期间,材料学专业的学生应该扎实学好专业基础知识。她认为专业理论基础扎实与否,一方面决定了就业面的宽窄,更重要的是决定了未来工作发展潜力大小。因为大家毕业后的工作与生活是比较忙碌的,很少再有机会系统学习。

以高女士的就业经历为例,她认为就业前应该事先做好以下准备:充分利用师兄师姐的经验、经历了解可能的工作方向,了解具体工作单位及岗位情况;面试前一定先尽可能了解面试的单位及岗位需求,做到有的放矢。

据哈尔滨玻璃钢研究院人事部一名负责人介绍,材料学专业的学生,要具备适应艰苦的工作条件的素质,因为做复合材料研究工作要经常去实验室,更重要的是搞科研一定要坐得下来,能够经得起反复失败和挫折的考验。

此外,在面试中,还应该积极锻炼个人表达能力,为自己增光。

走进材料学专业

高分子材料——性能优异,不可替代

高分子材料独特的结构和易改性、易加工特点,使其具有不可取代的优异性能,广泛用于科学技术、国防建设和国民经济各个领域。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人工合成的化学纤维、塑料和橡胶等也是如此。然而,一些高分子材料会含有毒性,使用、实验时要注意。

中科院高分子材料学研究方向的研究生王芬(化名)说:“我在本科时读的是无机非金属材料学,在研究生时根据导师的研究方向,选择了高分子材料学,即有机无机复合材料学,重点研究塑料、橡胶等,应用到现实生活中,为钻井平台进行驱油。平日里我们大部分时间在实验室度过,研究对象为甲醛、乙醇、乙烷等化学物质,一些化学物质如甲醛会有毒性,因此要做好防毒设施。”

无机非金属材料——基础学科,必不可少

无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一,主要研究建筑、水泥、陶瓷、玻璃等材料。目前比较受到关注的纳米材料也属于无机非金属行列。

无机非金属材料品种和名目极其繁多,用途各异,通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。常见的无机非金属材料有水泥、玻璃、陶瓷等。

有机高分子材料的特性篇6

铁电材料是现代信息存储、微电子、遥感、激光等关乎国民经济及国防的一类不可或缺的智能型重要材料,并且由于其特殊的偶极排列结构和集光、电、磁、热、力等于一体的特性使其具有任何材料都不可代替的特殊应用前景。分子基铁电晶体属于铁电化合物的一支,兼具无机和有机铁电体的特点。虽然以BaTiO3(BTO)为代表的钙钛矿结构(ABO3)的陶瓷铁电材料的发现揭开了铁电历史上里程碑式的时期[1,2],但是最早发现的铁电体罗息盐、KDP和后来研究比较多的TGS(三甘氨酸硫酸盐)其实都属于分子基铁电体。含铅铁电陶瓷是目前研究最多、性能好、使用最广泛的铁电材料,比如Pb(Zr1-xTix)O3(PZT)。PZT的优良铁电性使之取代Ba-TiO3成为应用最广的铁电功能材料,但是PZT的烧结温度达600—900℃,制备过程中有剧毒物PbO挥发,废弃物回收难,给人类赖以生存的自然环境造成不可恢复的危害。其潜在替代品钽酸锶铋(Sr1-xBi2+xTa2O9)(SBT)等最大的优点是没有疲劳退化的问题,且不含铅;可它的缺点是工艺温度更高、制备能耗高、剩余极化较小。因此,关于铁电材料的选择是个非常值得探讨的迫切问题。铁电陶瓷和分子基铁电体虽说均属于铁电体物理学研究范畴,可其微观结构和极化机制是不同的,尤其是近期发展起来的构筑模式较为复杂的分子基铁电体体系。一方面,分子基铁电体是由不同的有机和无机构筑块通过超分子堆积的相互作用构筑而成的,具有较高的结构调控性。另一方面,铁电体物理学本身就是与结构和结晶学密切相关的学科,而分子基铁电体的晶体结构恰好是可以通过单晶结构分析准确获得的,这比铁电陶瓷的粉末衍射分析更准确直观。引入朗道的对称性破缺理论,并分析复杂的分子基铁电体结构的铁电—顺电相变关系,进而总结结构变化中偶极变化与铁电性和非线性的关系,由此即可进一步发展结构结晶学在铁电体物理学中的运用。我们以分子基铁电材料为研究对象,充分利用了分子基铁电材料所具备的设计合成可控、环保、轻柔等优良特性以及无铅无重金属环保节能,易于与有机及无机材料整合等突出优点。在研究过程中,我们将分子铁电材料与陶瓷铁电材料进行对比,并借鉴相关研究的新发现、相关理论与重要方法,通过晶体工程进行结构性能调控设计,借助化学、物理和材料学合成与性能分析手段实现对新型分子基铁电材料设计调控与制备的突破,最终合成新型分子铁电材料。分子铁电材料属于软铁电体,分子柔性好,可做成可折叠的柔性存储器件,且矫顽场比无机铁电体小得多,这就有利于制成小型化器件,节省能耗。这类有机-无机杂化的铁电材料从组成上讲就是无机酸或金属离子与有机基团结合的产物,具有许多独特的优点,比如结构可控,兼具铁电、传导性、磁性、非线性、压电性、离子交换等许多物理化学性质。有机分子构筑块的可剪裁性和不对称性,确保了化合物结晶在手性特别是极性的点群中,合成的物质具有靶向可控性。

1小分子铵盐铁电体(二异丙胺卤素盐)

小分子铵盐铁电体主要是二异丙胺卤酸盐高温铁电体的发现(以溴盐和盐酸盐为典型),它们是性能接近或超过经典BTO的不含金属的高性能环保铁电材料。二异丙胺溴盐有两个晶型共三个相(P21,P212121,P21/m),高温相均为P21/m。变温下的倍频效应(SHG)进一步证实了空间群的准确性。铁电相到顺电相转变的居里温度高达426K。我们在研究中通过程序控温悬挂法解决了大尺寸单晶难以制备的困难。溴盐的不同相之间存在非常有趣的转变关系。首先,可以得到正交相,其中正交相可以结晶出大尺寸单晶,然后再通过热致相转变得到空间群为P21的单斜铁电相大单晶。经过定向切割打磨得到的沿极性面的大面积超薄单晶电极,可用于铁电和热释电特性的观察测量与进一步研究。二异丙胺盐酸盐与溴盐类似,居里温度高达440K,是目前已知居里温度最高的分子基铁电材料。此外,用变温X-射线单晶衍射仪对二异丙胺系列铁电晶体相变前后的结构解析,发现在顺电相正电荷中心沿极轴二重无序,总的偶极为零;并且随着外电场的反向而反向,产生固有偶极,表现出铁电和热释电特性。对实验所得到的大块单晶进行晶轴定向,制备成电容,测量其介电铁电性质。实验发现,变温非线性与极性结构相变密切相关。通过不断改进测试技术和方法,我们已经能够测量二异丙胺系列分子铁电材料的光电性能。此外,介电分析表明变温变频介电各向异性非常明显,居里温度附近介电异样非常大。大的介电常数不仅表明其结构具有大的极性变化,同时还可用于制作大容量电容器件。因此,我们从分子铁电的机理出发,设计了正负电荷中心可以沿极轴分离的二异丙胺系列化合物,实验测得盐酸盐和溴盐的饱和极化值均达到近一个数量级的提高。高温铁电体二异丙胺溴盐具有非常高的热释电效应,在铁电相其饱和极化值达到23μC/cm2,已经非常接近钛酸钡的饱和极化值26μC/cm2,也是目前已知的热释电效应最高的分子铁电材料。

2冠醚类的转子—定子型铁电体(4-甲氧基苯胺,DIPA)

分子转子—定子型铁电体实际上是一个分子马达(molecularmotor),它包括一个分子或依靠非价键作用力(如氢键等)而组装的超分子体系。当外界输入一定能量时会发生类似马达的运动,而且这样的运动有较大的变化幅度,能够被检测和识别。我们在研究中设计了一类冠醚超分子体系,其中有机胺(以4-甲氧基苯胺为例)阳离子通过氢原子与冠醚中的氧原子形成的氢键固定,充当分子马达中的定子,而转子是由苯环上的甲氧基作类似流星锤的转动或摆动。当分子处在高温相时(顺电相),分子快速转动,表现为各向同性。这种转动可形象地比喻为陀螺的旋转。若在陀螺的表面标注红黄蓝三种色彩,当陀螺高速旋转时,是无法区别其表面颜色组成的,但当其旋转缓慢,低到一定转速时,颜色即可区分。这样当分子转子降到临界温度(铁电相)以下时,转动变缓至冻结,表现分子各向异性,从而出现极性,铁电性产生。随着新型的低温分子转子—定子型冠醚铁电体应运而生,我们在近期研究中又发现了一类新的有机胺[2,6-二异丙基胺](DIPA)作为分子转子的铁电体,它与冠醚及高氯酸盐一同构筑了可产生有序-无序低温铁电的主—客体型包合物。从结构上看两种冠醚类的转子—定子型铁电体很相似。DSC、Cp、介电分析和P-E电滞回线测量结果表明,在居里温度Tc时发生的中心对称—非中心对称转变是一种顺电—铁电相变。变温下的倍频效应(SHG)及X射线粉末衍射分析进一步证实了空间群的准确性及分子体系中对称性破缺的发生。这种通过温度依赖的二阶非线性系数(χ2))来确定顺电相的空间群,为研究分子铁电体的对称性破缺提供了一个可靠且灵敏的手段。多数铁电体在发生结构相变时,伴随从中心对称到非中心对称结构的转变。利用χ2)-T曲线,能直观反映非中心对称结构的产生和消失,确定结构相变的特点,以及判断对称性破缺发生与否。

我们在研究中发现,此铁电机理的产生源于高氯酸根平衡离子的线性运动伴随18-冠-6和ClO4-离子的有序—无序相变。室温下,DIPA阳离子的分子间镜面恰好与晶体学镜面重叠,该包合物因18-冠-6分子骨架与DIPA阳离子中的两个异丙基之间的空间位阻作用而形成船式结构。除了排序现象,ITP(中温相)晶体结构与RTP(室温相)晶体结构相似。而LTP的离子间二次轴并不像ITP一样与晶体学二次轴重叠,且沿b轴的晶体学二次轴发生了对称性破缺。由此可见,18-冠-6主体分子和ClO4-平衡离子的有序—无序相变在此低温相变的产生中起到了举足轻重的作用。这与已知的其他主—客体型铁电材料的阳离子摆动/转动诱导相变的机制不同。从长远来看,这为探索和设计新型分子基铁电化合物提供了一个崭新的途径。

3多稳态分子铁电体(咪唑高氯酸盐、咪唑高碘酸盐)

多稳态是指材料的物理性质在一定的外界条件下处于两种或多种稳定状态,且能在热、电、磁、光、压力等外界微扰条件下完成不同状态之间的转换。它们在分子开关、传感器材料、信息存储和记忆材料等领域有广阔的应用前景[1—3]。铁电材料是探索具有多重双稳态性质的材料的理想对象,因为其自发极化值可对外部刺激作出反应并产生丰富的宏观物理性质,如压电、热释电及倍频效应(SHG)等。吡啶及咪唑类铵盐因其独特的铁电机制而变得极为有趣,即通过在平面内重新取向及高于室温的居里温度Tc产生铁电性。咪唑高氯酸分子铁电材料具有大的自发极化、高的相变温度和优良的压电响应特性。以咪唑高氯酸为原料生长具有大面积相同取向的薄膜。其压电响应特性可与无机铁电薄膜媲美。采用简单易行的制备方法,成功地实现了分子铁电薄膜的取向控制生长,为分子铁电薄膜材料在电声、水声和超声换能器件、以及其他传感器和驱动器件方面的应用迈进了坚实的一步,同时也为分子铁电薄膜的基础物性研究工作起到了积极的推动作用。我们的研究在探索多稳态分子铁电体的过程中发现了世界首例五重双稳态分子铁电体材料,这是不合常规的分子基铁电体,即咪唑高碘酸盐(IPI)。该小分子盐不仅具有铁电双稳态,而且随着温度变化在介电、压电、二阶非线性和电—机械耦合等物理特性方面都表现出了明显的双稳态特征。咪唑高碘酸盐(IPI)的多稳态特性与结构相变有关。高温相(HTP)的咪唑阳离子位于反转中心,表现出极为强烈的动力学无序现象[22,23]。这种相变类型让人联想到三甘氨酸硫酸盐TGS[22]典型的顺电—铁电相变,即空间群由P21/m变为P21。根据居里对称原理,P21就是P21/m的一个子群。倒反中心和镜面对称性的缺失原因可能是阳离子的有序-无序变化或阴离子的倾斜摆动,鉴于结构中阳离子的结构变化更为明显,推断该相变应属于有序—无序型相变。阳离子动力学状态的显著变化导致可逆相变中两个显著不同的介电态。通过对其介电常数的测量发现介电常数值表现出明显的温度不相关性和频率相关性,表明发生了介电弛豫现象,这一结果与阳离子的动力学特性相一致[26]。介电响应是可逆的,且加热和冷却过程的曲线围成一个类似窗户的矩形回线,这与其他已知的双稳态材料特性相似。介电分析表明这是一个一级的不合常规的铁电-顺电相变。尽管在很多分子体系中都观察到了双稳态磁化系数,但介电常数的双稳态依然很罕见[27—29]。压电系数对温度的相关性表明IPI同时在压电性质上表现出了双稳态特征,这是与压电激发态和稳定态相对应的。而且该分子体系中的电—机械耦合双稳态特征也是空前的。我们通过此次研究,成功实现了对分子铁电薄膜的取向生长调控,为分子铁电薄膜材料在分子铁电电子器件,以及其他传感器和驱动器方面的应用迈进了坚实的一步,具有重要意义。

4小结