首页 > 范文大全 > 计划安排

重金属污染的特征(6篇)

发布人:整理 发布时间:2024-04-03

重金属污染的特征篇1

关键词:指数法因子分析重金属污染高斯扩散改进模型

中图分类号:TU2文献标识码:A文章编号:1674-098X(2013)03(a)-0-02

1问题分析

针对海量数据,应从整体上对污染程度进行评价。而内梅罗综合污染指数法评价土壤的综合污染,以突出最高一项污染指数的作用。在土壤中有很多重金属元素有相似的存在形式和传播途径,并且有相同的污染源,因此在进行通过数据分析,说明重金属污染的主要原因时,基于统计原理建立起来正态模型,不同的重金属有不同的传播方式,其大体分为大气传播、水体传播、固体传播,因金属元素在土壤中大部分以稳定形态存在,故忽略重金属元素在固体土壤中的传播。根据收集的信息和题目中的有关资料对重金属污染物的传播特征的分析,可将8种重金属污染物分为两类。一类是在大气中传播,而大气传播的污染物最终经空气沉降进入土壤;一类是在土壤中传播。对于在大气中传播的重金属污染物,文章建立重金属污染物在气体中扩散模型,根据所在的空间任意位置土壤表面的重金属污染物浓度的多少来确立污染源的位置,函数的最大值即为污染源的位置;同理建立了重金属污染物在土壤中的传播模型。

2模型建立及求解

2.1土壤的环境质量评价与分级

2.1.1单因子指数法

2.1.3评价分级标准

该文采用GB15618-1995《土壤环境质量标准》。土壤环境质量综合评价指数分级参考了《绿色食品产地环境质量现状评价纲要》中规定进行分级,等级划分为1等级属清洁水平适合发展有机食品;2级属尚清洁水平适合发展无公害食品生产;3级以后属于污染水平,不适宜无公害农产品的生产。

计算得到综合污染评价指标后,通过分析比较得出该城区的各个功能区重金属的污染程度由高至低排序为:工业区主干道区生活区公园绿地区山区。

2.2重金属污染的原因分析

(2)计算标准化数据的相关系数阵,求出相关系数矩阵的特征值和特征向量。

(3)进行正交变换,使用方差最大法。得到5个主因子提供了源资料的87.756%的信息,满足因子分析的原则,而且从上表可以看出旋转前后总的累计贡献率没有发生变化,即总的信息量没有损失,采用此标准下的分析结果。

(4)确定因子个数,计算因子得分,进行统计分析。

2.2.2金属元素污染原因

根据该市空间立体分布图和各功能区的分布图,结合各个功能区的分布特点,由重金属元素空间分布图分析可知:(1)主因子1体现出的三个主要变量因子为Ni、CuCr三种重金属元素。Ni元素广泛的分布在该城市各个功能区。分析可能是易于传播的污染介质造成的,如煤的燃烧产生的粉尘、颗粒,以及含有Ni元素的岩石的风化等;Cu元素及Cr元素分布在城市的西南方,分布着工业区、生活区、公园绿地区、主干道区。Cu、Cr两种金属元素是工业生产中所形成的废气、废水和固体排放物中均大量存在的污染物。(2)主因子2体现出两个主要变量因子为Pb、Cd,其在来源上关联较密切,两种重金属元素的最大值均出现在工业区。其在空间上近似可认为是一个带状的污染源,这主要因为Pb主要来自市中心交通汽车尾气的排放,而且在研究取得西北部有两个明显的富集中心,形成一个高值区。该市表层土壤中的Cd含量市中心地带比西北城区高,东南城区又比市中心地带高,恰好与当地的主风向相一致,表明大气中含Cd污染物的干湿沉降也是造成土壤Cd污染的一个重要原因。(3)主因子3体现出一个主要变量因子Hg。该金属元素在生活区分布含量偏高,污染较为严重,其主要的污染原因可为人类活动造成水体汞污染,来自氯碱、塑料、电池、电子等工业排放的废水。(4)主因子4体现出一个主要变量因子As,该金属元素在各个功能区的分布较平均,这是因为的污染源多样。大气含砷污染除岩石风化、火山爆发等自然原因外,主要来自工业生产及含砷农药的使用、煤的燃烧。含砷废水、农药及烟尘都会污染土壤。(5)主因子5体现出一个主要变量因子,的分布具有明显的特点,在城市的西部富集,产生一高值区,该部靠近工业区,工业上的三废是其富集的主要原因。

2.3重金属污染物传播模型

3大气―平均风速的廓线模式

大气扩散主要是风的作用,平均风速的廓线模式是随高度变化的。在大气扩散模型中平均风速的廓线模式定义为风速随高度变化的曲线。风速的线性数学表达方式成为风速廓线模式。根据我国《指定地方天气污染物排放标准的技术原则和方法》(GB/T3840-1991)所制定的方法,采用米函数风速廓线模式。

幂函数分素廓线模式是在近地层、中性层、平坦下垫面的条件下推到出来的。该模式应用高度较高,可达到300m或更高的高度,且随应用高度增加,精度下降。

4水体

6模型评价及推广

6.1模型评价

6.1.1优点:运用主成分分析方法将多维因子纳入同一系统进行定量化研究、理论成熟的多元统计分析方法。通过分析变量之间的相关性,使得所反映信息重叠的变量被某一主成分替代,减少了变量数目,减少了变量数目,从而降低了系统评价的复杂性。再以方差贡献率作为每个主成分的权重,由每个主成分的得分加权即可完成对水质的综合评价。

6.1.2缺点:题目所给数据有限且单一,所建模型不足以全面反映该市土壤环境污染特征。.对于模型三,仅考虑了金属元素传播的部分途径,具有局限性。

7模型推广

模型一可推广用于投资风险评价;模型二可用于研究放射性物质的污染;模型三还可推广到研究病菌在空气中的传播;模型四可以推广到研究灰尘在空气中的扩散规律。

参考文献

[1]王建波.西北典型工业城市土壤中重金属的形态分析[D].兰州大学,2011.

重金属污染的特征篇2

[关键词]历史遗留铅锌废渣重金属污染对策

[中图分类号]P618.42[文献码]B[文章编号]1000-405X(2014)-3-220-1

0前言

威宁县的铅锌冶炼业历史悠久,据《大方府志》记载:在唐朝五代就有铅锌冶炼业,在近现代,清末民国时期和1958年的时期都有铅锌冶炼业。威宁县铅锌冶炼业发展较快、规模较大,污染最为严重的是上世纪末20年。威宁铅锌冶炼业以土法炼锌为主,主要采用土制马弗炉、马槽炉、横罐、小竖罐、六角炉等简易土高炉进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或氧化锌制品。生产工艺主要是用煤与锌矿按比例装罐后经燃煤加热,在煤还原作用下产出粗锌,资源、能源消耗消耗量大,锌的回收率低,浪费现象严重,产生的燃烧烟气和还原烟气直接排入大气,废渣随意倾倒,对生态和环境造成了严重的破坏和影响。因此,为改善生态环境质量,减轻废渣对环境的影响,为人民群众创造一个良好的生产、生活环境,对该区域冶炼废渣及时进行污染治理迫在眉睫。

1铅锌废渣重金属的污染现状及危害分析

1.1废渣分布状况

经过对全县炼锌区废渣堆放场点的初步了解,在近几十年的土法炼锌生产过程中未同步采取相应的环保措施,废渣乱堆乱放随意倾倒。据原毕节地区环境监测中心站调查,威宁县炼锌废渣总量为432万吨,主要分布在炉山镇、东风镇、草海镇、二塘镇、盐仓镇、金钟镇等15个乡镇,废渣总占地面积约4500亩,占地性质为耕地26.0%,荒坡、沟谷、洼地50.2%,河道23.8%。其具体分布情况如下:

(1)沿公路两侧分布

炼锌业大多沿交通发达的乡镇分布,主要有威赫线的盐仓镇盐仓村,威水线金钟段草海镇白马村、鸭子塘村、金钟镇冒水井村,水煤线猴场镇穿洞村、倮未村、发纠村等。

(2)沿荒坡、沟谷、洼地分布

二塘镇的果花村(大红山)、铁营村(湖南坡)、中山村、金钟镇的格兜井,东风镇红花岭村、格书村。

(3)沿河道分布

主要是沿乌江水系三岔河上游支流大河分布。在炉山镇的16个炼锌村几乎在炉山河两侧的沟谷,东风镇的拱桥村、黄泥村、竹林村、文明村在二塘河的支流拱桥小河上的支流拖倮河上。另外,羊街河两岸也有铅锌废渣的分布点。

1.2废渣重金属污染的危害

1.2.1对地表水、地下水水质的影响

炼锌废渣堆受地表径流及雨水的冲刷等作用,使炼锌废渣或其中的重金属、悬浮物等进入地表水,也有相当数量的废渣是直接倒入沟谷、河床污染地表水。大量的炼锌废渣堆积在河道,淤积、堵塞河道或造成河道改道,抬升了河床。这些废渣及其中的重金属、悬浮物等污染物进入地表水后,造成的污染相当严重,凡是在炼锌集中区的地表水,其水质基本都劣于《地表水环境质量标准》(GB3838-2002)Ⅴ类,污染主要是以铅、锌、镉为特征污染物,铅的污染尤为突出。炼锌废渣堆受地表径流及雨水的冲刷,从地表、溶洞渗透,将渣中的有毒有害物质转移到地下水中,从地下水的水质监测状况来看,基本都劣于《地下水环境质量标准》(GB/T14848-93)Ⅲ类,特征污染物仍然是重金属铅、镉、锌。

1.2.2对土壤的影响

铅锌废渣堆放区土壤污染是由炼锌废渣经雨水和地表径流的冲刷、淋溶,废渣中的污染物渗入土壤,造成的土壤污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。

从以上几方面的环境影响分析可以看出,铅锌废渣对环境的污染是严重的,受污染的空气、水和土壤直接危害到生活在渣场周围农民的身体健康和植物的生长。

2铅锌废渣重金属污染的防治对策

铅锌废渣重金属污染较难治理,这与它的特性是分不开的,同时也是它越来越受关注的原因,因此在治理重金属污染时必须充分考虑到它的特性。铅锌渣中的重金属(以铅、锌为主)通过雨水淋溶、空气氧化以及微生物作用后进入环境,对周围土壤、水体和生态环境构成威胁。由于重金属污染物属于持久性污染物,具有长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点,无法从环境中彻底清除,只能改变其存在的位置或存在的形态。

针对威宁县铅锌废渣的堆存特点和废渣重金属污染的特征,我们主要是考虑对废渣中的重金属污染物采取稳定固化的措施,实现铅锌渣的物理稳定、化学稳定和生态安全。铅锌渣(或铅锌尾矿)的堆积性质与沙砾十分相似,具有比较好的渗水性能。铅锌废渣中的重金属主要包括铅、锌,此外还含有少量的汞和砷等。目前,国内外常用的重金属稳定化药剂主要包括无机药剂和有机药剂。无机药剂类型主要包括硫化物、磷酸盐、硫酸盐、碳酸盐等等与重金属反应生成沉淀物质的化学物质,这些物质单独使用均会出现各种问题,如硫化物的毒性和臭味、硫酸盐沉淀的可溶性、碳酸盐对pH值的要求以及磷酸盐对汞稳定化的无效等等。有机药剂主要包括长链烷基胺和长链烷基硫,不溶于水,无法实现药剂与铅锌渣的充分混合,而且价格昂贵,是无机药剂价格的10倍以上。所以,我们主要将多种可溶性无机药剂按照优化比例组合而成,从而解决了各种药剂单独使用时可能产生的问题。

3结束语

威宁县历史炼锌区的土地污染严重,生态环境遭到严重的破坏,所以,清除当地的土地重金属污染也是一项十分迫切而重要的任务。威宁县炼锌废渣历史遗留重金属污染防治工程已列为贵州省炼锌区生态恢复及环境治理的示范项目,是贵州省“十二五”环境规划中污染治理的重点。项目是对炼锌废弃地的重金属污染物进行控制和植被恢复,是对被破坏的生态系统的恢复与重建,可以弥补、充实和丰富当地原有的自然界,从而可以促进当地社会、经济和环境的协调发展。但由于威宁县目前经济总量偏小,财政收入有限,建设资金筹措已成为制约该项目建设的一个主要因素。目前,威宁县人民政府正在积极向国家和省市在该项目建设资金上争取更大的支持。

参考文献

重金属污染的特征篇3

他的喜怒哀乐都与环境科学有关,为之而忧,为之坚守――黄山学院环境工程研究所所长徐圣友,长期从事环境污染物迁移转化规律、风险评价以及控制机理与技术研究,为我国环境科学发展做出了重要的贡献。

污染物的迁移转化规律以及控制机理与技术是徐圣友博士的主要研究方向。博士论文以多环芳烃(PAHs)为研究对象,系统的探讨了PAHs污染土壤修复技术及机理,通过对几种不同植物修复效率的比较研究,揭示了PAHs的环境行为规律,明确PAHs在土壤-植物系统的迁移转化途径;通过2D-PAGE蛋白质分离技术研究,寻找PAHs特异性降解功能蛋白,结合植物体内不同部位PAHs分布情况,阐明植物对PAH的吸收、累积与降解机理。

博士毕业后,他主要从事水环境污染物迁移转化规律、风险评价以及控制技术方面研究,先后申请了“河海大学水文水资源国家重点实验室开放基金”、“黄山市科技局重点基金项目”、“安徽省教育厅自然基金项目”以及现正主持研究的安徽省教育厅自然科学重点基金“新安江(黄山段)水体磷污染特征、源解析与迁移规律研究(KJ2012A259)”各一项。系统的研究了新安江(黄山段)水体与沉积物污染特征与迁移规律,已经完成了新安江(黄山段)沉积物中重金属污染特征研究,初步确定主要污染重金属,并采用单因子指数与内梅罗污染指数相结合评价的方法对其超标现状进行评价。同时开展了新安江(黄山段)沉积物中污染重金属的释放机理及水生植物体内污染重金属的富集规律研究。

他开展新安江(黄山段)沉积物中磷污染特征研究,初步确定新安江(黄山段)水体磷污染特征,阐明了新安江(黄山段)沉积物中污染磷的释放机理,并采用室内模拟的方法进行沉积物中磷污染控制对策研究。结果表明:新安江(黄山段)水体中总磷含量和可溶性正磷酸盐含量从源头至下段沿程变动幅度不大,除个别采样点浓度偏高外,基本上保持稳定,浓度较低;水体磷含量年内变化特征为:枯水期>丰水期。新安江(屯溪段)沉积物不同形态磷含量变化较大,人为干扰因素较多,新安江水质保护亟待加强。

作为省级特色专业环境科学专业的学科建设带头人,徐圣友以环境工程研究所为平台,带领着一支朝气蓬勃、奋发向上科研队伍,在水环境分析与评价、污染物的环境行为与风险评价、生态修复技术、固体废弃物的处理处置和利用等方面开展科学研究,团队以服务地方经济为主,辐射长三角,尤其是2011年成立的“大学生科研兴趣小组”实现教学相长,已成为培养大学生科研能力与综合素质的重要平台。

经过几年的建设,环境科学科研团队已经取得了一定的科研成果,先后在《ScienceoftheTotalEnvironment》、《JournalofIntegrativePlantBiology》、《JournalofEnvironmentalScience》、《Pedosphere》、《生态学报》、《中国环境科学》、《资源环境与工程》、《环境污染与防治》等国内外重要期刊上100余篇,其中SCI收录10篇、EI收录5篇,ISTP收录2篇……

重金属污染的特征篇4

关键词:菜地土壤;重金属;污染评价;武汉市城区

中图分类号:X53文献标识码:A文章编号:0439-8114(2017)01-0043-04

DOI:10.14088/ki.issn0439-8114.2017.01.012

AnalysisandAssessmentonHeavyMetalContentsofVegetablePlantationSoilsinNewUrbanDistrictofWuhan

GUOCui-ying1,2,WANGSu-ping2,CHENGang2,HONGJuan1,2,HUANGXiang2,DULei2,LIANZhi-cheng2

(1.CollegeofResourcesandEnvironment,HuazhongAgriculturalUniversity,Wuhan430070,China;

2.InstituteofCropSciences,WAAST,Wuhan430345,China)

Abstract:TounderstandthesituationofheavymentalpollutioninWuhanvegetablesoil,somesoilsampleswereconductedinthemainvegetablebases(Huangpiregion)ofWuhan,thecontentsofAs,Hg,Cd,Cr,Cu,Ni,Pb,Zninsoilweremeasured,andpollutionriskwasassessedbysinglecumulativeindexmethodandNemerowpollutionindexmethod.Theresultsshowedthatthevariationrangeoftheheavymetalcontentofvegetableplantationsoilswaslarge.TheresultsofpollutionriskevaluatedbysinglecumulativeindexindicatedthatthecontentsofAs,Cr,PbandZnwereatthelevelofsecurity,butCu,Ni,CdandHgwerehigherthanstandard,thepercentagewas5.20%,0.58%,15.61%,2.89%respectively,andpollutionlevelsofHgandCdwerethebiggest,theevaluationindexwere4.47and10.94.TheresultsofpollutionriskevaluatedbyNemerowpollutionindexshowedthat,only10.40%ofthesoilwereinthepollutionlevel,so,mostsoilofthevegetableplantationwassafelevel.Inaddition,NicontentandAscontentweresignificantlypositivelyrelatedwithpHvaluesinsoil,PbandHghadnegativerelationwithpHvalues.

Keywords:vegetablesoils;heavymetal;pollutionassessment;newurbartdistrictofWuhancity

中城市化和工业化进程不断加快,越来越多的污染物被排放到环境中,加上为追求高产造成的农用化学品的过量施用,均可导致重金属元素在土壤中不断积累[1]。由于蔬菜和农作物能从污染的土壤中吸收重金属,进而通过食物链进入人体[2,3],从而影响人类健康[4]。国内曾系统地对北京[5]、上海[6]、广州[7]、天津[8]、长沙[9]、杭州[10]、重庆[11]、海口[12]等城市的菜地土壤重金属污染状况做了一系列调查研究工作,结果表明,中国部分城市的菜地土壤受到了不同程度和不同种类的重金属污染,其中,广州市菜地土壤重金属砷和铅的污染最为普遍,超标率分别达到了23%、41%[7];长沙市郊区菜园土壤中镉和汞的污染较严重[9];重庆市蔬菜基地环境质量总体较好,但是汞和镉等重金属出现不同程度的超标[11]。目前,对武汉市土壤重金属的研究主要集中在湖泊沉积物、工厂附近土壤、高新技术开发区周围土壤以及城市土壤[13-16],但是对菜地土壤重金属的相关研究较少。

随着城市的扩大和居住人口的增多,蔬菜需求量日益增多,已有蔬菜基地复种指数越来越高,农用物资的投入也呈逐年递增趋势,新的蔬菜基地不断在建设。武汉市黄陂区是武汉市蔬菜种植面积最大的一个区,同时也是蔬菜产量最大的区域[17]。因此,对菜地土壤重金属污染状况的调查和评价很有必要,本研究以黄陂区为例,对该区域蔬菜生产基地的土壤重金属的污染情况进行调查,对该区域的农作物种植的安全生产以及区域规划具有重要的指导意义。

1材料与方法

1.1研究区域概况

黄陂区位于武汉市中心城区的北部,地理位置为北纬30°41′-31°22′,东经114°9′-114°37′。南北长104km,东西宽55km,总面积为2261km2。属亚热带季风气候,具有光照充足、雨量充沛等优点,是武汉市面积最大和人口最多的一个新城区[18]。

1.2样点布设及采样方法

研究对象为黄陂区大型蔬菜种植基地,根据不同种植基地的种植面积,并兼顾布点的均匀性、科学性和代表性的原则,于2015年5月至8月对上季已收获下季尚未种植的28个蔬菜种植基地的耕作层土壤(0~20cm)进行样品采集,共采得土壤样品173个。采用多点混合采样法,充分混合后采用“四分法”留取1kg土壤,带回实验室风干,除去可见的植物残体和砾石,碾碎,过100目筛装袋,供化学分析用。

1.3测定指标及方法

称取过0.149mm(100目)筛的土壤样品,采用盐酸-硝酸水浴消解,利用AFS-9700原子荧光光度计测定As、Hg含量;用硝酸-氢氟酸-高氯酸消解,用ICP-MS测定Cd、Cr、Cu、Ni、Pb、Zn含量。

1.4重金属污染评价

采用国家《土壤重金属污染评价标准》(GB15618-1995)二级标准为评价基准值,应用单因子污染指数评价法和内梅罗综合污染指数法对蔬菜种植基地的重金属污染程度进行评价,评价标准见表1。

1.4.1单因子污染指数评价法单因子污染指数是土壤环境质量评价的常见指标。其评价模式为:Pi=Ci/Si,Pi为土壤中污染物i的单项污染指数;Ci为污染物i的实测值;Si为污染物i的评价标准。Pi>1表示土壤受污染;Pi≤1表示土壤未受污染。Pi值越大,则受污染程度越严重,Pi≤1表示未污染;1

1.4.2内梅罗综合污染指数法内梅罗综合污染指数法是目前土壤环境质量评价的常用方法,在进行环境质量评价以及土壤污染程度的比较时具有较强的实用性,可以使不同污染物间和不同地域间环境质量的比较成为可能。综合污染指数法评价采用内梅罗公式计算。

P综=■

式中,P综为土壤污染综合指数;P为各污染物污染指数的算术平均值;Pimax为各污染物中最大污染指数。参照国家土壤环境质量标准,P综≤0.7表示安全;0.7

2结果与分析

2.1黄陂区蔬菜种植基地土壤重金属含量状况

由表2可知,黄陂区蔬菜种植基地的土壤中重金属含量变化范围较大,As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量范围分别为0.08~10.85、0.05~3.28、11.13~66.34、20.28~117.28、0.02~2.23、3.32~49.67、2.95~21.80、30.84~156.77mg/kg,变异系数在31.13%~292.11%,其中Cd、Hg的变异系数较大,说明其分布的不均匀程度较高。土壤中重金属的平均含量与湖北省土壤背景值相比,Hg的平均含量超过背景值,Cu的平均含量接近背景值,As、Cd、Cr、Ni、Pb、Zn的平均含量低于背景值。其中所有采样点的As、Cr、Pb的含量均低于湖北省土壤背景值,Cd的含量高于背景值的样点数占总数的19.08%,Cu占总数的67.63%,Hg占总数的53.76%,Ni占总数的1.73%,Zn占总数的17.34%。Cd、Cu、Hg、Ni、Zn最大含量依次为相应背景值的19.07、3.82、27.88、1.33、1.88倍,说明Cd、Cu、Hg、Ni、Zn在土壤中有不同程度的积累,并且Cd、Hg积累的现象比较明显。

2.2黄陂区蔬菜种植基地土壤重金属含量状况评价

2.2.1单因子污染指数以国家土壤环境质量二级标准为评价基准值,采用单因子污染指数法对采样土壤进行评价,结果见表3,其中As、Cr、Pb、Zn均处于清洁水平,Cu、Ni、Cd、Hg有不同程度的重金属污染,Hg和Cd污染程度较大,单因子污染评价值高达4.47和10.94。Cu、Ni只有部分土样达到轻度污染水平,所占的比例分别为5.20%、0.58%;Cd在轻度污染、中度污染、重度污染水平都有分布,分别占样本总数的6.94%、4.62%、4.05%;Hg中度、重度污染水平皆有分布,分别占样本总数的1.16%、1.16%。总体来说,Cd无论从污染的普遍性还是污染的程度都是最大的。

2.2.2内梅罗综合污染指数以国家土壤环境质量二级标准为评价基准值,采用内梅罗综合污染指数法对采样区土壤进行评价的结果见表4。该区土壤大部分处于警戒限以下,轻度、中度和重度污染都有分布。低于警戒限的土壤占样本总数的89.60%;处于轻度、中度、重度污染水平的土壤分别占样本总数的5.20%、1.73%、3.47%。采用该评价方法能综合表征土壤中多种重金属的污染水平,但是会突出高浓度重金属元素对总体重金属污染水平的影响。评价结果表明,大部分蔬菜种植基地土壤处于清洁水平,适宜健康蔬菜的生产。对于综合污染指数较高的土壤,可以先分析高浓度重金属,通过对高浓度重金属的改善来提高土壤的整体质量水平。

2.3黄陂区蔬菜种植基地土壤重金属含量之间的相关性

根据相关性分析结果(表5),调查区土壤中Ni、Pb、As、Hg与pH间的相关性达极显著水平,其中Ni、As与pH呈极显著正相关,Pb、Hg与pH呈极显著负相关。对土壤重金属元素间进行相关性分析,可以判断土壤中重金属的来源是否相同,存在显著相关关系的元素来自相同来源的可能性较大[19]。分析8种重金属之间的相关性,结果显示,多种重金属之间的相关性达到显著或极显著水平,其中Cr与Cu、Zn、Pb、As呈极显著相关,Ni与Cu、Cd、Pb呈极显著相关,Zn与Pb、As呈极显著相关,Pb与As呈显著相关,说明土壤中Cu、Zn、Pb、As元素可能有相同的来源。

3结论

调查区域菜地土壤As、Cd、Cr、Cu、Hg、Ni、Pb、Zn含量范围较大,依次为0.08~10.85、0.05~3.28、11.13~66.34、20.28~117.28、0.02~2.23、3.32~49.67、2.95~21.8、30.84~156.77mg/kg。其中,Cd、Hg的变异系数较大,说明其分布的不均匀程度较高,可能是存在外源污染造成的。

⒉舛结果与湖北省土壤背景值进行比较,并以国家土壤环境质量二级标准为基准值评价其单因子污染指数,表明土壤的As、Cr、Pb、Zn的含量水平皆处于警戒限下,Hg、Cd、Cu、Ni都存在不同程度的超标现象,其中Cd、Hg的超标现象较为严重。由于采样区域周围没有大型的工厂等其他明显的污染源,分析Hg超标的现象可能是由于长期使用含汞的肥料或农药造成的[20]。由于磷肥的生产原料磷矿石含有Cd等重金属,以及肥料生产工艺流程的污染,磷肥中常含有重金属元素等副成分,菜地土壤Cd超标可能与长期超量施用磷肥有关[21]。另外,针对本研究区域土壤中Hg超标的现象,可以通过施石灰、硫酸亚铁等方法来调节土壤的pH进行改善。

采用内梅罗综合污染指数法对采样区土壤进行评价,结果表明,低于警戒限的土壤占样本总数的89.60%,处于污染水平的土壤占样本总数的10.40%,且其中5.20%的土壤处于轻污染水平,对于5.20%的中度、重度重金属污染区域,必须采用合理的措施进行改善,从而为蔬菜的生产提供健康的环境。由于本评价以国家土壤环境质量评价二级标准为基准值,评价要求较低,对于生产绿色蔬菜的种植基地,需以更加严格的标准进行评价。

通过土壤中8种重金属及pH的相关性分析,表明Ni、Pb、As、Hg与pH的相关性达极显著水平,其中Ni、As与pH呈极显著正相关,Pb、Hg与pH呈极显著负相关。本研究与翟琨等[22]对恩施市蔬菜基地土壤重金属的研究土壤中Hg含量与pH呈显著负相关一致。此外,多种重金属之间也存在一定的相关性,这与姚春霞等[23]对上海市浦东新区蔬菜地土壤重金属的研究结论Cd、Zn、Cu、Pb、Hg、As相互之间统计检验相关性达极显著水平基本一致。

参考文献:

[1]HUXF,WUHX,HUX.ImpactofurbanizationonShanghai’ssoilenvironmentalquality[J].Pedosphere,2004,14(2):151-158.

[2]谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价[J].环境科学,2006,27(4):742-747.

[3]尹伟,卢瑛,甘海华,等.佛山市某工业区周边蔬菜地土壤金属含量与评价[J].农业环境科学学报,2009,28(3):508-512.

[4]PAPAZOGLOUEG,SERELISKG,BOURANISDL,etal.ImpactofhighcadmiumandnickelsoilconcentrationonselectedphysiologicalparametersofArundodonaxL.[J].EuropeanJournalofSoilBiology,2007,43(4):207-215.

[5]丛源,郑萍,陈岳龙,等.北京农田生态系统土壤重金属元素的生态风险评价[J].地质通报,2008,27(5):681-688.

[6]王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,28(3):647-653.

[7]魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8]李雪梅,王祖伟,邓小文.天津郊区菜田土壤重金属污染环境质量评价[J].天津师范大学学报,2005,25(1):69-72.

[9]李明德,汤海涛,汤睿,等.长沙市郊蔬菜土壤和蔬菜重金属污染状况调查及评价[J].湖南农业科学,2005(3):34-36.

[10]徐玉裕,史坚,周侣艳,等.杭州地区农业土壤中重金属的分布特征及其环境意义[J].中国环境监测,2012,28(4):74-80.

[11]张大元.重庆市蔬菜基地土壤环境质量状况及对策措施[J].四川环境,2010(6):58-61.

[12]何玉生,廖香俊,倪倩,等.海口市蔬菜基地土壤和蔬菜中重金属的分布特征及污染评价[J].土壤通报,2015,46(3):721-726.

[13]唐阵武,岳勇,程家丽.武汉市中小河流沉积物重金属污染特征及其生态风险[J].水土保持学报,2009,23(1):132-136.

[14]张贝,李卫东,张传荣.武汉东湖高新技术开发区土壤重金属污染状况及影响因素[J].环境化学,2013,32(9):1714-1722.

[15]王凯,凌其聪.武汉市城市土壤重金属粒径分布特征[J].环境化学,2013,32(12):2329-2334.

[16]李晶,凌其聪,严莎,等.武汉市重工业区周缘环境中镉的分布及其危害性[J].长江流域资源与环境,2010,19(10):1219-1225.

[17]丁健,朱涛,张洁.武汉市蔬菜市场调查分析[J].北方园艺,2012(22):198-202.

[18]罗洋洋.武汉市黄陂区耕地质量空间分布特征研究[D].武汉:湖北大学,2013.

[19]朱建军,崔保山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金属空间分异特征[J].生态学报,2006,26(1):146-153.

[20]尹伟,卢瑛,李军辉,等.广州城市土壤汞的分布特征及污染评价[J].土壤通报,2009,40(5):1184-1188.

[21]高阳俊,张乃明.施用磷肥对环境的影响探究[J].中国农学通报,2003,19(6):162-165.

重金属污染的特征篇5

关键词重金属;生态风险;沉积物;海河流域;2010年

中图分类号X824文献标识码A文章编号1007-5739(2013)04-0233-02

随着经济发展和人口增多,环境日益恶化,海河也受到严重的污染,工业废水与生活废水的排放增多,为海河水体环境修复带来更严峻的问题。重金属因具有毒性、不易降解及生物富集效应而备受关注。水中的重金属离子在一定的物理化学作用下,最终大部分会进入沉积物中。河流沉积物中重金属污染物较为稳定,但也可通过生物、物理和化学作用再次释放到水体而造成二次污染。因此,对海河沉积物中重金属分析具有重要意义。

1材料与方法

1.1样品采集

分别于2010年5、7、9月采集沉积物样品,共3次。在海河流域上分别设置12个采样站位点。样品采集、固定、贮存及运输均按照国家相关检测标准执行。

1.2样品分析

对所采集样品,分别测定汞、砷、铜、锌、铅、镉的含量,铜、锌、铅、镉均采用《原子吸收法(GB/T17378.5-2007)》,砷、汞均采用《原子荧光法(GB/T17378.5-2007)》。

2结果与分析

2.1重金属污染状况

共进行6种重金属检测,各重金属元素测定范围为汞0.02~0.95mg/kg,砷2.7~21.3mg/kg,铜12.44~95.24mg/kg,铅6.241~42.560mg/kg,锌48.6~415.5mg/kg,镉0.0602~0.5522mg/kg。

2.2生态危害指数污染评价

潜在生态危害指数(Ri)[3,7-8](potentialecologicalriskindex)评价方法是瑞典学者LarsHakanson于1980年建立的一套应用沉积学原理评价重金属污染及生态危害的方法。该方法作为国际上土壤(沉积物)中重金属研究的先进方法之一,不仅反映了某一特定环境中各种污染物的影响,也反映了多种污染物的综合影响,并以定量的方法划分出潜在危害程度,是目前应用很广的一种方法。该方法的计算公式为:

Cif=Ci/Cin

Eir=Tir×Cif

Ri=ΣEir=ΣTir×Cif=ΣTir×Ci/Cin

式中,Cif为某一金属的污染参数,根据其大小可将污染程度分为4个级别:CifZn(1)。

由表2可以看出,海河流域沉积物重金属中锌的污染参数最大,平均为1.47,其次为汞和铜,铅砷镉富集系数较小,重金属的综合污染特征显示,锌和汞处于中污染水平,其他4项都处于低污染水平。通过对各点位的分析可以看出,月牙河节制闸站位汞为中污染,尤以春、夏2季为重。汉沽蓟运河大闸站位砷为中污染,其他均为轻污染。刘庄浮桥站位铜的污染高于其他站位,属中污染,且夏秋季节更严重。月牙河节制闸站位的铅为中污染,且春夏季节严重。其他站位均为轻污染。锌元素有75%的站位均为中污染,团泊大桥最为严重,富集系数达到4.354,为较高污染。镉元素各站位均为低污染。

由表3、4可以看出,海河流域各类重金属的潜在风险系数小于40,92%的站位潜在生态危害系数小于150,属于轻微生态危害。月牙河节制闸和宁河大薄前桥这2个站位属于中等危害水平,应加强治理。从各元素来看,汞的潜在风险参数相对较大,平均为30.21,其次为镉、砷、铜、铅、锌。而根据富集系数分析的污染程度从重到轻依次为锌>汞>铜>铅>砷>镉,这是由于各元素的毒性响应系数不同,即毒性响应程度不同,也与沉积物对重金属的吸附能力,迁移能力有关。如汞无论以何种形式存在都有不同程度的挥发性,所以虽然汞的富集程度不高,但潜在的生态危害却很大。海河流域汞的生态危害尤为突出,尤其以月牙河节制闸最为严重。锌的富集能力很强,且颗粒物对锌的吸附能力较强,共同沉淀到沉积物中,具有较高的稳定性,所以其潜在的生态危害最小。虽然所分析的6种元素的潜在生态危害都较小,但汞和镉相对其他元素较高,应作为治理重点。

3参考文献

[1]王秋莲,刘春光,关玉春,等.天津近岸海域表层沉积物中重金属的生态风险评价[J].南开大学学报:自然科学版,2010(4):61-66.

[2]马德毅,王菊英.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-525.

[3]刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究,2002,15(5):33-37.

[4]乔俊,邵德智,罗水明,等.天津滨海新区黑潴河沉积物中重金属污染特征及地区性重金属污染指标选择[J].环境科学研究,2011(11):1343-1350.

[5]何孟常,王子健,汤鸿霄.乐安江沉积物中重金属污染及潜在生态风险性评价[J].环境科学,1999(1):8-11.

[6]张淑娜,唐景春.天津海域沉积物重金属潜在生态风险危害评价[J].海洋通报,2008,27(2):85-90.

重金属污染的特征篇6

关键词:电镀项目;污染特征;对策技术;防治

1.前言

随着汽车、家电等行业迅速发展,电镀工业也步入较为快速的发展阶段。电镀工业对国民经济的发展有着举足轻重的作用。电镀工艺是在基础建材如钢材表面涂镀金属涂层,以此改变基础建材的表面性质,使建材的抗腐蚀性增强、硬度增加,并大幅提高建材的导电性及耐热性,同时还能使建材表面更加美观。电镀工艺的实质是电化学加工,其具有独特的技术经济优势,因此难以被其他技术完全取代。在电镀项目中,电镀工艺会使用不同种类的助剂,如:活化剂和重金属盐等,其中重金属会对人体和自然环境产生巨大威胁,而且各种类型的助剂会构成一个繁琐复杂的系统结构,其会加剧重金属产生的危害[1]。电镀产生的污染物除了重金属外,还包括废气、废水及其他种类的固体废弃物,其已经成为重度污染行业。我们必须掌握电镀项目的污染特征,并在此基础上采取科学有效的防治对策。

2.电镀项目的污染特征

2.1电镀废水

电镀废水指电镀项目进行生产活动所排放的废水,一般分为含氰废水、含铬废水、含镍废水、含油废水及综合废水[2]。电镀项目产生的废水主要来源于清洗镀件,还有一少部分来自镀液的过滤及治理工艺。各种重金属离子、添加剂、酸性物质和碱性物质是电镀废水的主要成分,其中既包括无机污染物又包括有机污染物。

电镀项目产生的废水必须经过处理并达到可排放标准后方可外排。目前,针对电镀项目所产生的废水,已有多种成熟的处理技术,如:化学法、电解法、生物处理法等。还有一些电镀项目的生产线会对可排废水进行进一步处理,待其达到回用要求后重复利用,以达到废水零排放的目的。

2.2电镀废气

电镀项目的酸洗工序和活化工序会生成酸雾废气,主要成分为氯化氢、铬酸雾、硫酸雾及氮氧化物等,具体酸雾种类会随酸洗工艺的不同而有差别[3]。

目前,净化回收和组合治理等是治理电镀项目所产生废气的主要技术,并且每种技术都有与之匹配的设备。此外,还有很多企业利用碱液中和酸雾废气,以此达到处理电镀废气的目的。

2.3固体废物

电镀项目产生的固体废弃物主要包括废弃的电镀液、废水处理产生的污泥和槽液的过滤渣等[3]。其中电镀污泥通常数量较为庞大,必须引起高度重视,应对其进行妥善处理。电镀项目产生某些固体废物是《国家危险物名录》中规定的危险废物,其中含有重金属成分,必须由具备相关资质的企业单位进行回收、处理。

3.污染防治对策技术

污染防治对策主要指针对电镀工艺所产生的各种污染物而采取的科学有效的污染治理活动。

3.1电镀废水防治对策技术

电镀项目产生的废水包含铬、镍、铜、锌等重金属污染物,其中铬和镍是第一类污染物,所以必须对含铬废水及含镍废水进行单独处理。本文介绍的电镀废水治理技术为膜处理工艺,其主要思路如下:

首先分离镀件预处理废水和电镀清洗废水,然后根据电镀种类的不同分别对废水进行处理。由于镀镍产线的毒性较大,故需对其采取封闭运行模式,且实现含镍废水零排放。

针对含铬废水,首先应对其进行还原,随后采取“膜过滤浓缩”方法处理还原后的含铬废水,经过此步骤后便产生以下两种形式的物质:透过水和浓缩液。透过水可以再次用于生产,浓缩液可以利用专业设备将其烘干,于是便实现了含铬废水的零排放。

含锌废水的治理措施包括化学手段和物理手段,其中化学方法指絮凝和沉淀等,物理手段指捕集、吸附重金属离子,经处理达标后即可排放。

对于含氰铜废水的处理可分为以下四个步骤:第一,需对其进行微电解处理;第二,进行二级破氰;第三,絮凝及化学沉淀;最后,捕集并吸附金属离子。

传统的电镀废水治理技术采用单一的化学处理方式,不但浪费水资源,而且容易导致二次污染。该项电镀废水防治技术,弥补了传统治理工艺的不足,同时还能回收水资源及金属资源。

3.2电镀废气防治对策技术

活化槽及电镀槽是电镀工艺不可或缺的装置,而该装置在运行中会生成各种酸雾,如:盐酸雾、硫酸雾等。为了从源头控制电镀酸雾的产生,应在电镀过程中使用酸雾抑制剂,该抑制剂可以控制酸挥发。另外,为了收集挥发的酸雾,需将集气罩安装于活化槽和电镀槽的上方,并在槽的两侧安装吸风设备。经过收集的电镀废气便可送至处理设备进行废气处理。

废气处理设备包括酸雾净化器和碱吸收装置。首先电镀酸雾由酸雾净化器进行净化处理,随后吸风设备将净化后的电镀酸雾引入碱吸收装置,在该装置内电镀酸雾与氢氧化钠溶液发生中和反应,由此便可去除电镀酸雾。除了酸雾外,电镀废气还包括烃类物质,对于该类电镀废气,则可利用活性炭将其吸收。

3.3固体废物防治对策技术

首先将电镀项目产生的固体废物根据《国家危险物名录》进行分类,并对危险废物和一般固体废物采取不同的处理方式。企业(单位)必须对电镀过程产生的全部固体废物进行百分之百处理,不能直接外排。

国家规定的危险废物,必须将其交予具备相关资质的企业单位进行处理。对于具有可回收利用价值的一般固体废物,如:废弃的包装材料等,相关部门可对其进行回收再利用。其他工业固体废弃物按照当地规定进行统一处理。

4.结束语

电镀行业为其他行业提供各种表面处理产品,因此各行业对电镀行业的依赖性较大,但其污染严重,因此电镀行业在面临机遇的同时遭遇挑战。电镀项目的污染等级属于重度污染,企业(单位)必须重视电镀项目对环境产生的影响,全面了解电镀项目的污染特征,并在此基础上从源头、过程、末端等各阶段采取有效的污染防治技术,减少电镀项目对环境的危害。

参考文献

[1]赵起越,牟莹.北京地区电镀项目环境保护验收特点及验收监测关键环节研究[J].环境科学与管理,2013,38(8):158-160.