关键词:先进制造技术;煤炭加工工程;虚拟现实技术;绿色制造技术
DOI:10.16640/j.cnki.37-1222/t.2017.18.063
0前言
国内消耗的主要能源之一就是煤炭资源,作为有限资源,煤炭资源受到国家重视,并成为实施可持续发展战略的重要内容。目前状态下的煤炭资源呈现出了市场需求不足的情况,而煤炭产品本身的结构不合理导致国内的煤炭加工产业存在发展方面的矛盾。现在,很多煤炭加工企业都存在产品单一并且竞争实力不足的问题,该种问题导致了其产品在销售的过程中销量不断下降,严重限制了企业的发展。为了更好的实行可持续发展战略,国家大力研究并推广先进制造技术,将其运用到煤炭加工当中,致力于提升煤炭产品质量。
1先进制造技术分类
先进制造技术建成AMT,其由微电子技术以及自动化技术等多种技术组成,在经过多种变化以后,形成机械集成的技术形式。虚拟现实技术以及绿色制造技术都属于AMT的范畴,该两种技术通常被运用到煤炭加工工程当中,让煤炭加工的错做更加方便快捷,产品加工的流程也更加优化。AMT主要面对的是制造行业,其属于工具群以及技术群方面,在计算机辅助下,煤炭加工工程能够在生产的过程中将生产所產生的废物减少到最低,并且实现保护环境的目的[1]。
2先进制造技术在煤炭加工工程中的应用实践
(1)虚拟现实技术应用。虚拟现实技术在煤炭加工当中的应用首先体现在设计方面,煤炭加工当中采用该种技术能够使技术人员明确的了解产品的生产过程以及设备的运行状态,而在三维动态的仿真状态下,技术人员能够更加熟练的操作生产,适应各种操作条件,将自身的生产状态调节到最佳,实现煤炭加工流程的优化。例如,煤炭资源加工当中利用了虚拟现实技术以后,其能够通过该种技术的模仿明确设备的运作过程、各个部件的运动状态、煤炭矿浆的运动轨迹。其次,该种技术的应用还体现在控制方面。现在的煤炭加工当中都会以自动化的控制作为核心技术,而自动控制也成为煤炭加工的核心环节。但直接的自动控制并没有办法得到校验,要想实现对自动控制的检验,需要花费大量的人力和无力,甚至在校验的过程中对机械设备造成损伤。但在虚拟现实技术的支持下,该技术能以虚拟的形式对自动控制程序进行检验,并且评价该自动控制是否符合生产的要求。最后,虚拟现实技术在煤炭加工的应用还体现在教学和培训方面[2]。现代化的技术具有较为高深的核心理念,很多煤炭加工的技术人员无法学些和理解这些高新技术。而对于一些技术不熟练的人员,其在生产的时候因为操作的不熟练以及对于事故判断能力较低,导致生产出来的产品质量存在偏差。将虚拟现实技术运用到教学方面,主要是通过虚拟模拟的形式来为员工呈现出生产系统当中可能会出现的事故,并且让员工在这种较为真实的场景当中模拟判断事故并解决事故。员工则能够在该种模拟操作当中得到实践能力的锻炼,了解书面当中都无法理解的知识内容,将自身所学习到的专业知识与实践操作结合在一起,避免造成实际工作当中的失误。
(2)敏捷生产技术应用。敏捷生产技术也是先进制造技术的一种形式,而该种技术也是煤炭加工当中比较常用的技术。现代煤炭加工行业的发展过程中,其最主要的问题就是市场需求不足的问题,不少煤炭加工企业所拥有的产品都属于结构不合理而产品的种类也相对单一。在该种产品状态下,企业的发展必然会陷入到困境当中,其缺乏在市场上的竞争力,也无法让自身的产品销量提升,整个企业的发展将会受到严重的限制。而敏捷生产的技术能够帮助煤炭企业进行产品结构的优化并且调整生产的流程,让煤炭企业重新制定自身的发展目标,利用先进制造技术来天黑时呢过产品的质量,促使自身的产品更加符合市场需求。
(3)绿色制造技术应用。煤炭企业存在的一个重要问题就是煤炭资源当中存在非常多的硫,该种物质对环境的污染危害非常大。在煤炭燃烧的时候,其会释放出浓度非常高的有害气体并且会伴有大量的尘埃,该种物质会对动植物产生一定的损伤,更加会对人体的健康造成影响。二氧化硫会对金属物质产生腐蚀作用,并且且抑制动植物的生长。而绿色制造技术能够让煤炭产品的加工建立在绿色化学的基础上。例如,企业选择绿色选煤技术,通过对生物体内的生物酶应用来抑制煤炭当中所产生的有害物质,也可以选择微生物的技术来直接抑制矿物质当中产生的有害物质。可以说,该种绿色制造技术能够在煤炭的洗选过程中产生作用,利用绿色的煤炭生物技术来对煤炭进行脱硫,从而使被加工出来的煤炭产品属于绿色状态,能够为生态环境的维护做出贡献[3]。绿色制造技术也可以被综合的运用到煤炭的伴生资源当中,其在生产煤炭的过程中对煤炭进行技术加工,从而使煤炭呈现出清洁燃烧的状态。而绿色化的加工技术能够对煤层气以及矿井水等方面的物质进行回收利用。该种利用形式减少了煤炭加工对于环境的污染,也提高了资源的利用效率,更加提升了煤炭企业的生产水平。
3结论
国家需要重视煤炭加工当中所采用的技术,积极支持先进制造技术的应用和推广。在煤炭加工企业当中需要发展清洁技术以及产品的深加工技术,利用该种高新技术来降低煤炭产品对于环境的污染,促使煤炭产业的发展更加符合国家可持续发展的原则,让煤炭资源的利用率不断提升,降低煤炭生产的成本。先进制造技术要求技术人员具有较高的专业知识,而管理人员也需要对煤炭加工进行集中化的管理。煤炭企业将会利用该种技术来提升自身的生产力和竞争力,让其在市场竞争当中占据主动地位。
参考文献:
[1]赵建辉,马永航.先进制造技术在煤炭加工工程中的应用研究[J].化工设计通讯,2017(05):86+129.
[2]黄霞春.先进制造技术在煤炭加工工程中的应用[J].吉林广播电视大学学报,2015(02):59-60.
1.水利工程示范基地的建设
首先,要在进行新型技术推广之前,对水利工程的技术推广体系进行完善,使水利工程的建设能够拥有专业的技术推广模式。此外,要根据现阶段水利工程的技术应用特点,对技术应用等级较高的水利工程示范基地进行构建,使水利工程的示范基地能够具备较强的系统性特点。要加强对水利工程资金状况的研究,根据当前水利工程的财政资金拨付状况,对水利工程的示范基地各类基础性工程进行关注,使水利工程示范基地的每一项工作都能在完整的技术应用方案的控制下实现组织结构的完善,以便当前的工作团队可以在更加科学的组织模式下进行工作具体职能的科学分配。要根据水资源节约的需要,对示范基地的节水特点进行分析,并结合冻土示范基地的特点,对示范基地的参观学习机制进行完善,使示范基地能够在更大的社会范围内发挥积极作用。
2.根据湿地技术要求实施节水灌溉设计
2.1湿地技术的节水灌溉领域的突出优势
农田的水利灌溉系统是保证农产品产量和生产效率的重要系统,因此,水利系统不仅需要保证对当前的水资源进行完整的灌溉,还需要对现代化水利灌溉技术进行科学的应用。结合湿地节水灌溉技术,对农田水利灌溉系统进行设计,可以很大程度上提升湿地节水系统的效率,保证当前的农田资源能够得到更高质量的用水需求。另外,要根据当前粮食的具体产量,对节约用水的范围进行明确,使当前的灌溉系统能够保证水资源调配的合理性。因此,湿地技术的正确运用可以使灌溉系统具备较强的经济效益。另外,湿地技术的运用还能够使灌溉系统更好的进行低下水资源体系的保护,以便当前的灌溉系统能够更高质量的进行地下水资源的使用,保证地下水资源能够对农田系统进行良好的供给。湿地技术的运用还能够使地下水资源的水质得到较高程度的改善,使灌溉系统能够更好的提升水资源供给的标准化程度。将湿地技术运用于水利领域,还可以使水利灌溉领域的管理机制得到较大程度的完善,使水利工程的管理机制能够得到不断的完善,提升管理质量。
2.2湿地技术在节水体系当中的具体运用
在进行湿地节水技术运用的过程中,需要结合节水系统的使用需求,合理的进行技术应用基础的选择。首先,要尽可能选择地势较为平坦的区域进行湿地技术的运用,并使一些盆地区域也能够进行节水系统的设计。另外,要加强对不同行政区域内的塘堰关注,使塘堰在农业灌溉系统当中的应用范围能够控制在5%以上。在进行现代技术应用方案设计的过程中,要加强对技术应用成本的关注,并从环保理念的角度出发,对客观物质的应用方案进行设计,使现代技术的应用能够更大程度上使用天然的坑地和洼地进行节水体系的设计,使天然洼地能够成为具备现代技术特点的湿地。另外,还要加强对生物技术的应用,根据不同植物的生长习性特点,对供给植物水资源的范围进行设计,以便水资源的排放沟渠可以实现宽度的增加。要根据当前水资源排放的需要,对植物的污染处理作用进行设计,以便植物能够更好的进行水资源的排放处理,将自然物质中原有的沟壑作为设计湿地的基础性硬件。要加强对雨水资源的关注,根据灌溉的需要,对自然环境中的雨水资源进行科学的引导,并结合灌溉沟渠的设计需要,对湿地的生态特点进行研究,使当前的湿地能够更好的形成沟渠,并保证能够对雨水资源实现高质量的利用。要根据生态环境的设计需要,对水资源的具体流向进行设计,保证水资源能够顺利的通过沟渠进行排放,使水资源能够促进生态环境质量的提升。要根据现代科学技术的要求,对水资源实施化学因素的设置,必要的情况下可以使用氮、磷等物质进行湿地面积的研究,使湿地面积保持在农田整体面积的7%以下。可以利用排水渠道,对湿地的水资源实施综合性管理,使水资源的排放能够更大程度上适应灌溉系统的技术标准。
3.科学运用水生植物进行污水处理
污水资源的处理是提升灌溉质量的重要工作,而利用水生植物进行污水的处理,能够很大程度上提升污水资源的处理效率。
首先,要结合污水资源的处理需要,对污水治理的体系进行完整的分析,使水生植物能够利用处理污水的特点进行灌溉系统的净化。另外,要保证灌溉体系当中的水资源能够具备较强的营养成分,使产生污染的灌溉资源不会对河流的通道构成不利影响。要从水资源保护的角度,对水生植物进行选取和栽植,既要保证水资源不会受到水利工程的污染,也要避免大型工程的施工造成水资源流失,使现代技术的应用可以和生态环保理念并行不悖。要按照正规的程序进行水利建设过程中植物的选择,例如,可以使用茭白和芦苇,对水生植物进行种类控制,可以使用多种水生植物相搭配的方式进行水资源的净化。
在水利工程的整体设计范围内,水生植物的使用种类要尽可能保持在三十种以下,避免水生植物的应用方案过于复杂为后续的管理工作增添负担。要加强对水生植物成本的关注,根据当前氮磷等化学物质的成本情况,对水生植物的设计方案进行调整,使水生植物在净化水资源的过程中,不会产生过高的资金成本。要逐步使用人工技术对原有的技术进行替代,以便当前的人工浮床技术能够更好的同相关化学技术进行整合,使生物技术在应用的过程中得到不断的完善。要结合不同时间段的水资源净化情况,对污水的处理质量实施分析,尤其要加强对水生植物管理系统的重视,从水资源的闸门入手,对水资源的提取泵站进行技术管控,并使水资源的具体储存位置能够受到总控制站的有效调控。要对污水资源的处理质量进行分析,如果污水能够得到较为彻底的处理,则要对污水的具体去向进行科学的分析,使污水能够更好的用于灌溉或养殖,要对污水的处理结果进行等级划分,务必保证污水处理之后能够达到和地表水资源相同的洁净度,使污水资源能够更好的供给水利工程的需要。要对实施处理的污水资源进行体积的明确,必须保证每个阶段的污水处理资源在400m3以上,使污水资源可以使用水池进行体积的合理控制。
4.完善水利工程科技推广体系
要加强对当前政府在水利工程领域政策的关注,科学利用有利政策对水利工程的科技应用体系进行完善。首先,要保证水利工程领域的工作人员能够更好的进行骨干人才的任免,尽可能多的邀请科研院所的骨干人才参与水利工程的科学技术研讨,使水利工程设计施工团队能够具备对最新科学技术的了解,并根据工程的实际需要引进合适的科学技术,使水利工程能够在科技因素的带动下实现使用质量的提高。
另外,水利工程团队要组建专门的技术研发团队,根据水利工程施工过程中的经验,对技术应用的合理之处进行记录,并将众多技术的改进方案实施综合研究,尽快制定出能够提升水利工程质量的科学技术。此外,还要加强对技术知识产权的关注,利用法律工具对最新科学技术的研发人员进行利益的保护,使科研工作的质量得到保证。
关键词:工业生态学;生态工业技术;特征;比较;
作者:傅泽强
工业技术创新与进步是实现工业可持续发展的源动力.然而,由于传统工业技术忽视了环境资源的稀缺性和生态过程的多样性,以追求单一的经济效益为目标,导致传统工业技术推动下的工业化进程加深与环境污染日益加重的尴尬局面,因此传统工业技术的生态化创新与发展迫在眉睫.笔者基于工业生态学理论,提出了生态工业技术的概念,并进行了比较研究和典型案例分析.
1生态工业技术概念提出的背景
人类工业化历程表明,工业系统是人类社会与自然生态系统相互作用最为强烈的一个子系统.在人类各种经济活动中,工业活动对自然环境作用最大,由此造成对自然环境的影响和损害也最为严重[1].工业对环境的影响本质上是工业技术生态负效应的表现,生态环境危机是技术在逆生态模式下不断扩张后不可避免的结果.康芒纳[2]认为,人类发展对资源和环境等自然资本的影响主要受到人口增长、富裕程度和技术能力的约束,而人口和富裕这2个因素的增长不足以解释环境污染的高速增长,显然,环境危机与技术变革紧密相关.传统工业技术体系是依据物理和化学原理建构的,其物质转化过程是线性的而非网状的,开环的而非闭环的.工业技术进步主要通过劳动生产率单一指标衡量,却基本忽视了技术使用对生态环境的影响.日益加深的传统工业技术所产生的生态负效应成为人类经济和社会可持续发展的强大制约因素,迫使人们开始关注工业技术的生态化问题.
为彻底解决工业活动带来的环境污染问题,欧美等发达国家率先提出了以末端治理为主导的工业污染控制技术体系.不可否认,末端治理技术在控制工业污染方面曾起到过积极作用,可能还将长期主宰环境问题的治理环节,然而,由于其存在着种种缺陷和不足,不能从根本上解决环境污染问题,还可能产生恶性经济效益[3].在这种情况下,探索新的更有效的环境污染预防与控制技术成为工业界和学术界的紧迫课题.
从技术角度看,末端治理不能从根本上解决工业污染问题,清洁生产虽然通过持续改进生产工艺、设备及产品设计、原材料,从源头预防污染和减少废物产生,但由于仅限于单个企业内部,因此不能解决区域性的工业污染问题.工业生态学[3]为人们深刻认识技术与环境的关系,重新审视和评价传统工业技术的建构理论、性能特点、使用方式合理性等问题提供了一个全新视角,同时也为从根本上解决工业活动对环境的影响提供了一体化方案.生态工业是基于工业生态学理论的具体实践模式,它从企业群落、区域层面入手,仿照自然生态系统中物质和能量流动方式规划和设计工业生产系统,形成一种全新的、生态化的工业生产系统或工业生产组织形式[4—5].实质上,工业生态系统组成成员之间形成的共生关系是借助一类具有“链接”功能的技术的支持,该类技术就是生态工业技术.
2生态工业技术的定义和内涵
生态工业技术是指按照工业生态学和系统科学原理,把2个或多个生产过程或生产单元链接起来,形成结构和功能协调、资源和能源效率高、环境污染排放少、经济产出高效的工业共生体和复合型生态产业链网的方法和手段.
广义上,生态工业技术是指在工业系统中使用的能够使系统内部的物能效率最大化和污染排放最小化的所有与环境友好的技术,例如无废工艺、清洁生产、绿色化学、绿色制造、生态工程等.
狭义上,生态工业技术是指依据工业生态学原理和生态设计原则建构的一套新的工艺流程、新的工艺方法,以及新能源、新材料、新技术的使用方法.它使工业系统中2个或2个以上的生产环节或生产体系形成“工业共生”关系,整个工业系统形成有序的工业营养结构和食物链、网,从而达到既合理利用自然资源,又将工业生产过程对环境的破坏作用降低至最低水平的目的,获得良好的生态、经济和社会效益.
从生态工业技术的定义中可以看出:
a.生态工业技术建构的理论基础是工业生态学和系统科学原理,其最终目标是通过对传统工业技术的生态创新,实现传统工业系统的生态化转型,核心是生态效率[6],即在实现经济效益最大化的同时,降低从原料开采、产品加工和制造、产品消费直至产品废弃后回收利用的生命周期中的物耗和能耗强度,减少废物产生量和最终排放量,使工业活动产生的生态环境负荷最小化.
b.从生态工业技术的功能来看,它是重构工业生产组织的基本方法和手段.借助于生态工业技术,2个工业生产过程或单元形成了一个具有特定物质转化功能的工业共生体,而多个工业共生体则形成了复合型的生态产业链网,也即工业生态系统,其物质流动由线性模式转变为链环状模式,从而使得资源、能源、投资及人力资本得到最优化和高效利用,工业生产过程、产品对生态环境的影响最小化.
c.从生态工业技术转化的对象看,它既属于产品深加工技术,也是一类资源再生技术.在一个特定的工业共生体中,下游生产单元把上游单元输出的“产品”作原料进行深加工,显著增加了“产品”的价值;而以“废物”作为全部或部分原料,又使得上游生产单元产生的“废物”变成了再生资源.
d.从生态工业技术的环境功能看,由于它利用了上游生产单元产生的废物,从而使得整个工业共生体的废物排放量显著减少,降低了可能造成的环境污染和风险,因而它也属于一类环境技术.
3生态工业技术的属性和特征
生态工业技术具有多重属性和特征,既具有一般技术的共性特征,也具有与一般技术显著不同的个性特征.
3.1链接(或关联)性
“链接性”(或关联性)是生态工业技术的最基本属性之一,也是区别于其他一般技术的最显著特征.由于生态工业技术所具有的“链接”属性,2个或2个以上的工业生产过程或单元形成了工业共生体.从这个意义上说,“链接性”是辨别或评价生态工业技术的基本指标之一.
生态工业技术与工业共生体之间存在着因果关系,即后者是在前者的支持下才得以形成,且后者是前者的“寄主”,即生态工业技术寄寓于其支持下形成的工业共生体之中,工业共生体是生态工业技术存在的“土壤”.例如,钢铁厂与建材(水泥)厂是一个工业共生体,“高炉渣生产水泥技术”是使钢铁厂与建材厂进行物质交换的关键因素.建材厂采用钢铁厂产生的高炉渣作为生产水泥的原料,从而实现了2个生产单元的链接与共生.如果失去了该项技术支持,那么“钢铁厂-建材厂”工业共生体就不复存在.同时,利用高炉渣生产水泥生态工业技术寄寓于“钢铁厂-建材厂”工业共生体中,“钢铁厂-建材厂”共生体如果不存在了,该生态工业技术也就失去了意义.
生态工业技术的关联性可用工业共生体中2个生产单元之间物流强度的大小衡量.一般而言,工业共生体中2个生产单元交换物质的数量越大,表明该项技术的关联性越强,否则,关联性越小.二者之间的物质交换量为零,则表明二者之间不存在关联.
3.2资源效率与环境效应
生态工业技术的另一个特征是具有较高的资源和能源效率,即显著减少了单位产品或服务的资源、能源消耗量,提高了资源、能源生产率.
在传统工业技术条件下,工业生产过程和单元基本上是独立的.在经过一个过程之后,原材料中的一部分转变为产品,同时,有部分原材料不可避免地变成了“无用”的废物.由于经济、技术水平的制约,这些废物难以被利用或者是由于利用成本太高,最终排放到环境系统之中,造成了资源浪费和环境污染.
借助于生态工业技术,原本相互独立的2个或2个以上的工业生产过程或单元间构成了链网结构,形成了结构和功能协调的工业共生体,一个过程或单元的输出(产品或废物)成为另一个过程或单元的输入(原材料).由于下游生产过程或单元对上游生产过程或单元输出的物质(产品或废物)进行了再加工,得到了新的产品,因此对于转化的初级产品而言,其价值得到了提升;对转化的废物而言,其环境影响和风险被消除.无论是初级产品还是废物转化,都提高了资源生产率.同时,工业共生体中的下游生产过程或单元由于使用了来自上游生产过程或单元的再生资源作为原料,减少了原生资源的使用量,间接地降低了原生资源开发可能带来的生态环境影响.
总之,借助于生态工业技术形成的工业共生体,其资源生产率可通过下游生产过程或单元对上游生产过程或单元输出的物质进行再加工、再转化而得到提高,同时减少了原生资源的使用量和废物排放量,避免或减少了生态影响和环境污染.
3.3经济效果
与传统工业技术相比,生态工业技术具有较好的经济效果,同时还能够带来一定的生态和社会效益.
a.产品增值效应.生态工业技术是生态产业链形成的前提条件,具有产品价值增值效应.在一个以“产品原料”为纽带形成的生态产业链中,下一个生产过程或单元以上一个生产过程或单元产出的中间产品为原料,随着生态产业链的延伸,上一个生产过程产出的初级产品的价值得到显著提升.
b.资源再生与替代.工业生产过程中产生的废物实质上是未予充分利用的原材料,一部分是化学性质基本没有发生改变,而仅仅是其物理形态、大小等发生改变的废料,如金属切割、木材加工产生的碎屑等;另一部分是理化性质发生较大变化的废物,如煤炭经过燃烧后形成的粉煤灰等.无论哪种类别的废物,如果不加利用而排放,就会造成资源浪费和环境污染.
在工业共生体中,废物也是资源,即上一个生产过程或单元的废物是下一个生产过程或单元的原料.利用废物进行生产,减少了原生资源使用量,实现了资源替代.从另一层面看,原本可能带来环境污染的废物转变成资源,并利用生态工业技术转化为具有较大价值的新产品,也表明了生态工业技术所具有的环境和经济效果.
4生态工业技术与传统工业技术比较
生态工业技术是传统工业技术生态化的结果.与传统工业技术相比,无论是在技术建构的理论基础、资源效率、环境绩效方面,还是在经济效益方面,二者均存在明显差异。
生态工业技术和传统工业技术之间的本质区别在于其建构的理论基础.生态工业技术以工业生态学和系统科学为理论基础,强调技术的整体性和环境友好性.它是模拟自然生态系统的结构和功能而建构的技术体系,以生态效率和综合效益为创新目标,而不追求单一生产效率或经济效益.在技术建构上强调反馈作用,技术之间构成网状、有机联系,物流上表现为从源到汇再到源,即同时存在2个物流方向相反、相互衔接的物质代谢过程:“资源产品"的产品代谢[7]和“废物资源"的废物代谢[7],从而使物质在一个闭环系统中循环,既降低了资源、能源消耗强度,同时减少了废物排放,减轻了技术对生态环境的压力.
传统工业技术原理及模式是建立在物理学、化学基础之上的,强调普遍性和一致性,而忽视生态过程的多样性及与自然的和谐性.技术结构与功能之间缺乏有机联系,表观上为离散的、不连续的,物流上表现为线性的、开环的,即“资源产品废物";的单向流动模式.传统工业技术系统中主要以产品代谢过程为主,由于缺乏自我调控和反馈机制,资源、能源消耗强度大,效率低,大量中间代谢物及废弃产品成为不再利用的“废物”排放到环境中.
不同工业技术模式下的产业系统,其结构、目标及生态效应存在显著差别.传统工业技术引导下的产业体系是逆生态的,主要以不可再生资源、化石能源为其原材料和动力,投入高,效益低,以单一经济利益最大化为目标,而忽视资源和环境承载能力;产业结构是链状的,而不是网状的,行业间、部门间的横向联系和共生关系薄弱,缺乏必要的物质、能量的多层分级利用关系,表现为不合理的产业和产品结构、产业布局、资源配置、土地利用格局,以及不协调的生产关系,如企业供需矛盾、技术发展与环境保护冲突等.
生态工业技术引导下的工业生产体系是生态化的,强调以可再生资源和清洁能源为其原材料和动力,具有科技含量高、不可再生自然资源消耗少、环境污染小、经济社会和环境综合效益好等特征.
5典型案例
高炉渣是冶炼生铁时从高炉中排出的一种废渣,经水或空气急冷处理成颗粒状,又称为粒化高炉渣.每生产1t生铁时高炉渣的排放量,随着矿石品位和冶炼方法不同而变化.例如采用贫铁矿炼铁时,生产1t生铁产出1.0~1.2t高炉渣;用富铁矿炼铁时,生产1t生铁只产出0.25t高炉渣.
高炉渣是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质所组成的易熔混合物,从化学成分上看,它属于硅酸盐质材料,与水泥成分基本相同;而且高炉渣是在1400~1600℃高温下形成的熔融体,水淬成粒状矿渣具有潜在的水硬胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,可显示出水硬胶凝性能,是一种生产水泥的优质原料.
借助于“高炉渣生产水泥技术”,上游企业——钢铁厂排出的“废物”成为下游企业水泥厂的原料,原本相互独立的钢铁厂和水泥厂形成了工业共生体,不仅节约了生产水泥的原料,降低了水泥原料开采可能带来的生态环境影响,消除了高炉渣排放可能对环境造成的影响;而且可用高炉渣作为水泥混合材料生产矿渣硅酸盐水泥,每m3混凝土可节约成本15~25元.目前,用高炉矿渣作为水泥原料,其掺入量可占水泥质量的20%~85%.但随着掺入量的增加,水泥标号降低.因此,在不降低水泥标号的前提下提高高炉渣掺入量,是该项技术的发展方向.