关键词:不规则结构平面不规则竖向不规则加强措施
1引言
高层建筑一般应选用规则的形体,平面布置规则对称、侧向刚度沿竖向均匀变化、竖向抗侧力构件截面尺寸和材料强度自下而上逐渐减小、避免侧向刚度和承载力突变。不规则会给建筑结构带来两大危害:(1)不规则一般都会引起质心和刚心之间的偏心,导致结构出现较大的扭转;(2)不规则结构往往会在一些部位产生应力集中,使结构在受到较大的水平力(如地震力)时应力集中部位发生严重破坏。历次震害表明,不规则建筑在地震中较规则建筑的更容易坍塌破坏,造成大量的生命财产损失和严重后果。因此,在我国的《建筑抗震设计规范》(GB50011-2010)中明确规定对不规则的建筑结构应采取加强措施。
2不规则建筑的类型及其划分
建筑结构的不规则类型主要包括平面不规则和竖向不规则两个方面:
平面不规则:a、扭转不规则;b、凹凸不规则;c、楼板局部不连续;
竖向不规则:a、侧向刚度不规则;b、竖向抗侧力构件不连续;c、楼层承载力突变。
建筑结构的不规则程度分为三个层次,即一般不规则、特别不规则和严重不规则。三种不规则程度的具体判定参考《抗规》第3.4.1条文解释及2010年国家住建部建质[2010]109号文件“关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知”附录一“超限高层建筑工程主要范围的参照简表”中对建筑不规则性的明确规定。
3不规则建筑结构的设计加强措施
根据《抗规》第3.4.1条,不规则建筑结构的加强措施根据不规则程度分为三种情况:
一般不规则――按规范、规程的相关规定采取加强措施(具体可参考《抗规》第3.4.4、3.4.5条)。
特别不规则――经过专门研究和论证,采取高于规范、规程规定的特别加强措施,对于高层建筑还应严格按照建设部令第111号进行抗震设防专项审查;
严重不规则――不应采用,应要求建筑师予以修改、调整。
对于不规则结构的设计调整和加强措施主要有以下几个方面:(1)选用正确的计算分析方法和计算模型,如不规则建筑应采用振型分解反应谱法和空间结构计算模型,当凹凸不规则和楼板局部不连续时采用符合楼板平面内实际刚度变化的计算模型,薄弱层地震剪力乘以1.15的增大系数等;(2)控制结构扭转周期比、扭转位移比、层刚度比和受剪承载力之比,多塔结构还应控制塔楼偏置比;(3)提高周边抗扭构件抗剪能力,增强结构抗扭性能安全;(4)减小结构相对偏心距,调整不规则结构平面布置;(5)薄弱部位加强抗震构造措施,如楼板削弱较大部位应加厚洞口周边楼板并采用双层双向配筋;加大薄弱部位的柱、梁截面及配筋,提高该部位抗侧刚度等;(6)抗震设计时考虑设置防震缝,将结构划分为几个较简单的单元。
4工程实例
实例1:某图书馆地上六层,平面布置如图1所示。该建筑长50.4m,宽39.9m,一层层高4.5m,其余楼层3.7m,建筑总
高度23.9m。柱网尺寸为7.2m×7.5m、
7.5m×7.5m、8.1m×8.1m。抗震设防类
别为标准设防,抗震设防烈度为6度,
设计基本地震加速度值为0.05g,设计
地震分组为第一组,场地类别为Ⅱ类。
主体结构采用现浇钢筋混凝土框架结
构,抗震等级为三级。
该建筑形体及构件布置存在如下不
规则项:
(1)楼板局部不连续――各层楼板
开洞面积均大于本层楼板面积的30%,图1某图书馆标准层平面图
楼板有效宽度均小于典型宽度的50%。
(2)侧向刚度不规则――底层的侧向刚度小于相邻上层侧向刚度的70%。
设计时采取的加强措施:(1)采用符合楼板平面内实际刚度变化的计算模型(弹性楼板定义),计入楼板的变形影响;(2)控制整体扭转刚度第1、2主要振型(X、Y方向)均以平动为主;(3)控制层扭转刚度考虑偶然偏心影响下的扭转位移比均在1.2以内;(4)针对楼板开洞造成的楼板刚度削弱较大,采取开洞周边楼板加厚为150mm,并双层双向配筋且每个方向的配筋率不小于0.25%的加强措施。(5)对竖向刚度突变(薄弱)部位,计算时采用地震剪力乘以1.15的增大系数,并对该层框架柱采取加强配筋等措施。
实例2:某办公楼地上八层,平面布置如图2所示。建筑长79m,宽22.8m,层高4.5~5.5m,建筑总高度40.5m。柱网尺寸为4m×8m、8m×8m、8m×10m。抗震设防类别为标准设防,抗震设防烈度为6度,设计基本地震加速度值为0.05g,设计地震分组为第一组,场地类别为Ⅱ类。该结构柱位规整,故拟采用现浇钢筋混凝土框架结构,抗震等级为三级。
图2某办公楼标准层平面图
经初步计算,确定该建筑形体及构件布置存在如下不规则项:
(1)凹凸不规则――各层平面凹进尺寸大于均相应投影方向总尺寸的30%。
(2)侧向刚度不规则――三层的侧向刚度小于相邻上层侧向刚度的70%,
(3)楼层承载力突变――三层抗侧力结构的层间受剪承载力小于相邻上一楼层的80%。
根据《抗规》3.4.1条文解释“同时具有本规范表3.4.3所列六个不规则类型的三个或三个以上”属于特别不规则建筑,需经过专门研究和论证,采取相应的加强措施。
为减少该结构的不规则程度,使其成为一般不规则结构,首先考虑增加薄弱层的抗侧刚度及受剪承载力。若仅采用加大柱、梁截面等措施进行加强,计算后发现三层侧向刚度及层间受剪承载力仍不能满足要求。因此,考虑对该建筑的抗侧力构件进行适当的增加和调整:
(1)在建筑四角及中部楼板凹进部位设置一定数量的剪力墙,增强抗侧刚度,如图3所示;
(2)适当加大三层楼面及三层楼面以下各框架柱及框架梁的截面尺寸,同时适当减小三层楼面以上部分框架柱、梁的截面尺寸,以减少三层抗侧力构件与其上一层抗侧力构件的受剪承载力差距。
图3增加剪力墙后标准层平面图
经过调整后的计算结果如下:
(1)周期比(Tt/T1):第一平动周期(T1)平动系数(X+Y)为1.0,扭转系数0.0;第1扭转周期(Tt)平动系数(X+Y)为0.1,扭转系数0.9;周期比Tt/T1=0.55
(2)位移比和位移角:考虑偶然偏心地震作用,各工况下最大位移与层平均位移的比值为1.18,最大层间位移与平均层间位移的比值为1.19,位移比均小于1.2。最大层间位移角1/2266;
(3)各层楼层刚度比最小值1.098;各层楼层抗剪承载力之比最小值0.83。
由此可见,该结构的竖向不规则项经过调整后消除,已不属于特别不规则建筑,而属于一般不规则建筑,按相关规范、规程的规定采取加强措施即可。
5结语
关键词:抗震设计处理措施新型结构
Abstract:Forseismicdesignofbuildingshasclearrequirementofductilityofstructuremember.Seismicinfluenceinbuildingsufferedlocalfortificationintensityorhigherthanlocalfortificationintensity,easytoshearfailurecausedbydamageandevencollapseofthestructures,unabletomeetthe"repairableundermoderateearthquake,designearthquakedoesnotfall".Thispapermainlydiscussesthestructuredesignofhigh-risebuildingandthesolution,andproposestheuseofsomenewbuildingstructure.
Keywords:seismicdesign;measures;newstructure;
Technology;
1高层建筑抗震设计常见的问题
在高层建筑的建设中,其中最主要的问题是对它的抗震问题的研究,现在首先介绍一下抗震设计中常见的一些问题。
1.1缺乏岩土工程勘察资料或资料不全。有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。
1.2结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。
1.3一个结构单元内采用两种不同的结构受力体系。如一半采用砌体承重,而另一半或局部采用全框架承重或排架承重;底框砖房中一半为底框,而另一半为砖墙落地承重。
1.4底框砖房超高超层。高层项目普遍存在此现象,超高建筑不仅给疏散工作带来压力,而且也会减弱抗震效果。
1.5抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(GB50223-2008)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,却减低了抗震设防标准,不利抗震。
1.6结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值B1/B不满足≥0.75的要求。
1.7抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。
1.8框架结构砌体填充墙抗震构造措施不到位。砌体护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。
1.9结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。
1.10平面布局的刚度不均。抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。这些都对抗震极为不利。
1.11防震缝设置。对于高层建筑存在下列三种情况时,宜设防震缝:①平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程(JGJ3-2002)》中表2.2.3的限值而无加强措施;②房屋有较大错层;③各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。
上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。选择合理的抗震措施是提高建筑物抗震的关键。
2保证结构延性能力的抗震措施
合理选择了结构的屈服水准和延性要求后,就需要通过抗震措施来保证结构确实具有所需的延性能力,从而保证结构在中震、大震下实现抗震设防目标。系统的抗震措施包括以下几个方面内容:
2.1“强柱弱梁”:人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大;而柱端塑性铰出现较晚,在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。
2.2“强剪弱弯”:剪切破坏基本上没有延性,一旦某部位发生剪切破坏,该部位就将彻底退出结构抗震能力,对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值,使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。
2.3抗震构造措施:通过抗震构造措施来保证形成塑性铰的部位具有足够的塑性变形能力和塑性耗能能力,同时保证结构的整体性。对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。
3、关于新型结构的探讨和应用
3.1脊骨结构(inestructure)特别适用于具有高大门厅、空旷地下车库,顶部阶梯式的高层建筑。脊骨结构根据建筑布置条件可由支撑、外伸框架或单跨空腹梁构成,可采用全钢或钢筋混凝土组合体系。由于抗侧力构件沿高度连续,避免了薄弱楼层,有利于结构抗震,保证刚度和稳定的抗侧力构件是高层建筑的脊骨,包括竖向构件抵抗由倾覆力矩引起的轴力及由对角支撑或刚性连接的构件或抗侧力的墙组成剪离膜(Shearmembrane),一个脊骨结构包括位于建筑外端少数钢、混凝土或组合巨型柱,这些柱不应影响各楼层的使用。
巨型柱由支撑、空腹桁架或刚性连接的外伸框架梁连接成为一个脊骨结构,以下是脊骨结构组成的几个要点。
1.为了有效的抗倾覆力矩及剪力,脊骨结构应当是上下贯通的。
2.为了有效的抗倾覆力矩,巨型柱相距越远越好。
3.脊骨结构主轴应与结构主轴相重合。
4.楼板结构应能直接将楼层荷载传到巨型柱以提高抗倾覆能力。
5.脊骨结构在平面上包括的面积应能提供良好的抗扭刚度,否则应附设周边框架。
6.剪力膜(空腹梁、支撑、刚性连梁及作为脊骨的竖向构件)应不影响地下空间(车库)并应与建筑设计相适应。
3.2剪力膜的三种型式:
1.带支撑框架,巨型柱由跨过多层的对角支撑连在一起。
2.带外伸框架的支撑筒体。
3.单跨空腹梁。不论是风力控制或地震力控制的高层建筑,脊骨结构体系都是非常有效的。可用于20层至100层的高层建筑。在国外,脊骨结构已在高层建筑中得到应用。如:美国费城53层的拜耳大西洋塔楼采用全钢脊骨结构和56层的米尼亚波里斯的西北中心大楼具有多层次阶梯形屋顶是采用组合巨型柱脊骨结构。
4、结语
从长远观点看,如何从我国高层建筑抗震设计现状及国际高层抗震设计发展的趋势出发,探求一种新型的结构的应用,应该成为地震区高层建筑发展的新方向。为了最大限度地减轻震害,建筑工程技术人员应努力在抗震设防、抗震设计和施工质量三方面都提高到一个新的水平,才能确保建筑工程具备合理的抗御地震的能力。
参考文献:
(1)施楚贤主编《砌体结构》武汉工业大学出版社
【关键词】建筑结构;抗震设计;有效措施
引言
在一个建筑中,抗震结构的设计至关重要,因为它是建筑抗震的基础。由于地震是一种难以预测的自然灾害,因此,为了避免或者减小地震带给人类的灾难,那么,建筑工程技术设计者就应该进一步做好建筑结构的研究和设计,统筹考虑并处理好建筑的使用功能、外形美观和建筑安全等方面要素,最终建造出更加实用、更加美观、更加经济、更加安全的理想建筑。
一、建筑抗震设计应该重点关注的几个方面问题分析
1、对于抗震场地的选择
在选择建筑场地时,应该选择有利于建筑抗震地址,避免选择不利于建筑抗震的场地,不能在危险的地段建造建筑物。地震会对建筑物造成一定程度的破坏,这些破坏除了地震引起的结构性破坏之外,建筑的场地条件是一个非常重要的要素。例如地震会引起地层的错动、地基土层的沉陷、地质的滑坡等。所以在建造建筑时,必须选择有利于建筑抗震地段,避免在软土层、容易液化的土层和土层分布不均匀的地方建造建筑。如果没有办法避开这些条件时,则应该采取一些抗震措施,加强建筑物的抗震能力,例如可以根据抗震设防的类别或者地基容易液化的等级等条件,合理采用加强地基强度、加强结构的整体性、消除地基的液化沉陷等方面的具体措施。如果地基的主要受力层有软性土层和特别不均匀的土层时,应该合理采取地基加固、桩基、加强基础、加强上部结构等方面的处理措施,对于可能造成滑移的场地可以采取稳固地基的相关措施,确保建筑物的抗震能力进一步增强。
2、对于建筑结构体系的选择
对于建筑结构体系的选择也非常重要,它是结构设计必须要考虑的一个问题,结构方案是否合理直接决定着建筑的经济和安全等方面的性能。应该做好以下几各方面的设计内容:一是结构体系不可因为部分结构的破坏而导致整个建筑结构抗震能力的丧失,不因为局部的破坏而丧失建筑物的整体承载力。在建筑抗震设计中,建筑物内力重分配功能是在设计时应该始终注意的一个原则,建筑结构必须具有这样的能力,才能保证地震来临时即使部分结构失去承载力,而其余的建筑构件仍然能够承担起竖向荷载的需求,这样就可以有效避免建筑结构的整体失效。二是建筑结构体系必须具有合理的地震作用传递路径,建筑物中的竖向构件布置应该尽量在垂直重力作用下使压应力更加均匀。而楼屋的盖梁系布置则应该使垂直重力尽快传递至竖向构件墙上去。对于转换结构的布置必须使上部结构传来的垂直重力通过转换层一至二次转换。同时还应该明确整体的抗侧力结构体系,抗侧力结构通常是由剪力墙或者框架等组成的,它们之间应该尽量做到贯通连续,保证竖向变化的缓慢和均匀。三是结构体系必须具备良好的承载力,建筑结构应该具备良好的变形能力,能够消耗地震产生的部分能量。目前广泛使用的钢筋混凝土结构,就具备良好的内力重分布能力,这种结构能充分吸收地震产生的部分能量。四是建筑的结构体系必须具备一定的强度,具有合理强度分布的建筑能够避免局部突变而造成的影响,分散因地震而产生的过大应力。对于框架结构的设计,应该保证节点的完整性,加强底层柱底的塑性,尽可能分散梁柱端的塑性铰,采取有效措施加强薄弱部位的抗震能力,保证建筑物的安全性能。
3、关于建筑平面布置的规则性
再进行建筑设计时,应该注意平面与立面的布置,使其符合抗震设计的原则,在设计时适宜采用比较规则的设计方案,严重不规则的建筑设计方案不利于建筑抗震。在建筑抗震设计规范中,对于平面或竖向不规则的建筑结构应该采用空间结构计算方式,结构不规则或者局部不连续的建筑应该采用实际刚度变化的建筑计算方式,薄弱部位应该按照有关规定进行塑性分析,有针对性地采取抗震构造措施。结构对称性是指抗侧力主体结构来说的,平面对称的框架结构、剪力墙结构和框剪结构等,通常容易实现对称性要求。建筑结构规则性主要包括以下几点,一是建筑主体的抗侧力结构主轴方向的刚度应该接近,结构变形的特性也要求尽力统一;二是在建筑主体的抗侧力结构中,沿竖向断面及其变化必须具有均匀性,避免出现突变的情况;三是在建筑主体的抗侧力结构中,平面布置必须保证同一主轴方向的抗侧力结构的刚度均匀,增加建筑抗震能力;四是在建筑主体的抗侧力结构中,平面布置要注意中央的核心刚度与周边结构的刚度保持一致,使主体结构的抗扭刚度更好,这样能够避免在地震来临时,或者在大风的作用下,建筑物产生过大的变形,减少对于建筑结构及其构件的破坏作用。
二、加强建筑结构抗震能力的有效措施探讨
1、避免高层建筑抗震设计中短柱问题的有效措施
一是采用复合螺旋箍筋方式,短柱只要符合强剪弱弯的要求,就能做到避免发生剪切性的破坏。使用复合螺旋箍筋,能够提高柱体的抗剪力,从而增强建筑的抗震能力。二是采用分体柱,削弱短柱的抗弯力,抗弯的强度不可超过抗剪的强度。在地震来临时,建筑物的柱体首先达到抗弯的强度,呈现出延性破坏状态。三是采用钢管砼柱,砼填入薄壁圆形的钢管中形成钢管砼,这是一种特殊形式的套箍砼。钢管内的砼会受到钢管的约束,砼会处于三向受压的状态,这样能够提高砼的抗压强度,显著改善砼的延性。四是采用钢骨砼柱,由钢骨与外包砼组成钢骨砼柱,其外包砼能够有效防止钢构件的局部变形,使柱体的整体刚度得到进一步提高,改善钢构件的屈曲性能,充分发挥钢材的强度。在高层钢筋砼结构下部采用钢骨砼柱能够减小柱体的尺寸,大大提高建筑结构的抗震能力。
2、改进多层砖房抗震设计问题的有效措施分析
多层砖房的抗震措施可以分为以下三个部分:
一是构造柱和圈梁的设置,对于有较多横墙的多层砖房来说,应该设置构造柱;横墙较少的多层砖房应该视情况增加一至二层;横墙承重的装配式钢筋砼楼、屋盖的多层砖房必须设置圈梁;有隔开间的多层砖房应该沿构造柱的横墙和纵墙,在每层楼盖处设置闭合圈梁。圈梁截面不宜太大,钢筋的用量不宜太多。
二是构件间的连接措施,各个构件之间的抗震构造连接至关重要,是多层砖房加强抗震能力主要部位。抗震构造所连接的部位比较多,其连接措施主要有以下几点:构造柱与屋盖的连接,装配式楼和屋盖的构造柱应该与每一层的圈梁进行连接;现浇楼和屋盖应该在楼与屋盖处设置240毫米乘以120毫米的拉梁,并且与构造柱相连接;构造柱与砖墙连接的连接处应该砌成马牙槎,沿墙高每隔500毫米设置拉结钢筋,伸入墙内的幅度应该大于1米;在墙与墙的连接上,对于层高超过3.6米,或者长度大于7.2米房间,如果外墙转角和内外墙交接处没有设置构造柱的话,就应该沿墙高每隔500毫米设置拉结钢筋,伸入墙内的幅度应该大于1米。
参考文献:
关键词:建筑结构设计隔震消能减震
引言
建筑结构设计中是否充分考虑抗震问题、是否合理的运用了相关的抗震措施是事关人民生命财产安全的重要问题,关于建筑物抗震问题的研究也有相当长的一段历史,从世界建筑设计领域和我国建筑设计领域来看,均取得了一定的成效,但是在我国连续发生四川汶川地震、玉树地震等地质灾害以后,人们更加注重建筑物的抗震设计。一直以来,我们在建筑设计中有关抗震都是坚持了“小震不坏、中震可修、大震不倒”的原则,虽然设计方面在抗震方面也采取了很多措施,但是,由于各种原因,还是不可避免的出现了在地震中因为建筑结构方面的问题而给人们带来巨大损失的例子,分析原因,最主要的就是施工人员从思想上不够重视,存在侥幸心理,偷工减料,私自修改设计方案,没有真正将抗震措施落到实处。在这里,我们对建筑设计中抗震的基本类型、主要措施结合具体实践经验进行研究,以期和同仁交流学习。
1、建筑结构的主要隔震措施
建筑物的抗震设计中,我们通常是对地基进行特殊处理、设置抗震装置、对建筑的上部结构进行防震设计,这几种措施通常是混合使用的,但是我们结合地震构造特点及建筑物本身结构,会有侧重的在关键部位设置隔震层,依据隔震层的位置不同我们把建筑物的隔震设计分为以下几种。
1.1建筑物地基采用特殊材料隔震
建筑物基础隔震,主要是对建筑物的基础部分进行特殊处理,削弱地震时的地震波,从而减少地震对建筑物的损害。传统上是在建筑物的基础部分交替铺上粘土和砂子,或者直接设置粘土或砂子垫层。在中国建筑史上,曾经有人以糯米为原材料,在建筑物的基础部分设置垫层,减少地震对建筑物的损害。近年来,有关部门在这方面的研究已经取得了突破性进展,以沥青为原料研究出一种特殊材料,以此设置隔震层效果更好。
1.2建筑物基础设置隔震装置减震
这一种隔震措施主要是在建筑物的基础与上部建筑之间设置特殊装置,减少地震向上传递,最高可减少地震对建筑物传递能量的2/3,但是,这种措施的缺陷是不适用于高层建筑,因为在高层建筑设置这种装置会延长建筑结构自身的自振周期,起不到减小地震对建筑物损害的目的。通常采用的办法有:摩擦滑移隔震、粘弹性隔震等几种,设置的装置有橡胶垫、混合隔震装置等。
1.3建筑物层间隔震措施
层间隔震这种方法主要适用于旧房改建,在施工方面具有简单、易操作的特点。与建筑物基础部分设置隔震装置的办法相比,层间隔震的效果不是非常明显,减震的效果可以达到1/10~3/10的范围。这种方法主要是依靠设置在建筑结构各层间隔的减震装置吸收或者削弱地震能量,从而减小地震对建筑物的危害,设置的装置基本与基础隔震的相同。
1.4建筑物结构悬挂隔震
悬挂隔震是将建筑物的大部分或者整个结构悬挂起来,也就是我们通常所说的悬挂结构,这样,当地震来临时,地震的能量不会传递给悬挂起来的结构,从而达到减小地震损害的目的。这种隔震方式最常见于大型钢结构,大型钢结构总是采用钢结构悬挂体系,以此隔震。大型钢结构一般分为主框架和子框架,在悬挂体系中,子框架通过索链或者吊杆悬挂于主框架上,当地震来临时,主框架会随着地壳运动发生摇摆,但是,子框架和主框架之间是能够活动的索链和吊杆,地震的能量到达这个部位的时候就会削弱,不至于传递到子结构产生惯性力。
2建筑结构设计中常用的减震技术
以上我们所说的几种措施主要是对建筑结构本身的基础部分或者关键节点进行特殊设计,或者采用特殊材料,或者设计安装减震装置减少地震的能量向建筑物传递。我们这里所说的建筑物结构设计中常用的消能减震技术是借助建筑物意外的部件来增加建筑物的阻尼,消耗地震传递给建筑物结构的能量,避免建筑物因地震而受到损害。用于减小地震对建筑物损坏、保护建筑物安全的装置和元件很多,通常都是各式各样的消能器和阻尼器,我们习惯上把这些装置分为滞回型和粘滞型两种。这种技术的使用非常广泛,主要有以下几种情况。
2.1新建建筑物的结构设计
随着人们安全意识的不断增强,建筑结构设计理念的不断更新,人们对建筑结构的减震、隔震设计越来越重视。我们在设计的时候,除了对建筑物的基础部分采用特殊处理之外,还可以借助消能减震装置或者元件削弱地震对建筑物的作用力,保护人们的生命财产安全。
2.2对建成建筑物的抗震加固
在对建筑物的地基或基础进行隔震设计时,我们一定要在建筑物没有动工以前按照隔震设计的措施,完成相应的工作。最迟也是在建筑物的施工过程当中,在建筑物的关键部位设置特殊的隔震装置。然而,建筑物建成以后,如果想对其进行抗震加固,就要采用增加阻尼的办法,在建筑物的结构上重新添加消能减震装置。
参考文献:
[1]建筑地基基础设计规范GB50007-2002
关键词:高层建筑;抗震;结构设计;探讨
引言
现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。
1高层建筑发展概况
80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。
2建筑抗震的理论分析
2.1建筑结构抗震规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。
2.2抗震设计的理论
拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。
3高层建筑结构抗震设计
3.1抗震措施
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
3.2高层建筑的抗震设计理念
我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。
对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。
在发生地震时,地震源向地表传递地震波,建筑物受地震波的影响,特别是对民用建筑物影响,会出现建筑物摇动、结构发生振动、变形、甚至倒塌。所以,消能减震技术在建筑物的应用是缓解地震灾害冲击的重要选择。消能减震技术简单的来说,就是通过技术手段把地震灾害直接与建筑物的能量降低、减弱,把建筑物基础结构支撑点、剪力墙等构件设计成耗能部件,基础结构与建筑上部结构分离,通过耗能杆和阻尼器,防止地震能量向建筑物上部输入,达到保护建筑安全的目的。
2民用建筑结构设计的主要消能减震技术措施
民用建筑的消能减震措施非常之多,有对地基进行特殊处理的,有设置抗震装置的,也有对建筑结构上层进行设计的等。但在实际运用中,一个建筑物有可能都应用了以上几种措施,有些会更多。但总的来说,建筑物的消能减震设计关键还在于地基采用的特殊减震材料和建筑隔震层的设计。
2.1建筑消能建筑材料的应用
消能减震材料的应用主要作用于建筑的地基,地震对建筑物的直接作用也是地基,所以建筑物要达到消能减震的最佳效果是在地基上做一些主要的设计,这样也是最能达到效果,也是最直接的处理手段。建筑地基的隔震,通常是通过铺设一些特殊的材料来削弱地震时的地震波,把地震产生的能量吸收一部分,达到消除地震波对上层建筑的破坏。在民用建筑结构设计中,消能减震措施都使用传统的施工工艺,主要的材料是粘土和砂子,或者在地基上直接使用粘土和砂子垫层。随着科学的发展进步,国际上很多建筑物把沥青作为消能建筑的材料,并且达到很好的效果,现今已经得到了广泛的应用。
2.2建筑基础设置减震装置和隔离层的应用
减震装置和隔离层这种消能减震措施主要应用于建筑物在地基与建筑上部连接之间,减震装置的设置可以对地震能量降低2/3左右,通常采用的办法有摩擦滑移隔震、粘弹性隔震等,应用比较灵活,对材料没有局限,可根据具体情况进行选择。建筑隔离层与隔离装置相比效果不是非常明显,它减震的效果在2/10左右,它的作用无法参与到建筑设计的整体中去,因此减震效果明显差一些。但它适用于旧房的减震改建,施工简单、易操作。所以两者都是我们设计者值得关注的,充分体现它们的区别和作用是关键。
3对于建筑物消能减震技术的主要措施
3.1消能减震技术应用的加固措施
近年来,自然灾害对建筑的损坏受到大部分人的关注,也是大家都关心的问题。随着这种安全意识的加强,民用建筑抗震加固是人们迫切的需求。消能减震的应用也直接关系到人民生命财产的安全,所以在设计的时候,要在地基部分采用特殊材料处理之外,还需要设计减震装置甚至是减震层来削弱地震对建筑物的作用力,确保能有效的对抗地震等自然灾害。针对建筑物的抗震加固,我们一定要根据建筑物的结构设计和基础条件等因素来完成相应的工作。
3.2在建筑物性能和需求的消能减震措施
在建筑物的消能建筑设计方法上,我们需要根据建筑物的基本性能和消能需求等作出有效的设计措施。而混合消能支撑系统(VD-BRB系统)是我们选择的最佳措施,它的主要设计方法是在建筑物的底层配置防屈曲消能支撑,并在其它的建筑层配置粘滞阻尼器。所以在我们对建筑物进行消能减震设计的过程中,要精确进行结构验算,在保证建筑物变形的最大限度、结构的最大承载力等是否符合规范要求,用最有力的数据来判断消能减震技术的可行。如果可行,就需要我们确定阻尼器的数量和最大优化它的布置方式,保证结构达到预先验算的结果;如果不能满足建筑物性能和需求的,需要我们及时调整方案,增加阻尼器的数量和布置方式进行消能减震加固。所以混合消能支撑系统(VD-BRB系统)是建筑物面对不同的性能和需求时,可以实现有效的管控,因为它的变量只有阻尼器的变化,可以根据实际需要进行设计和应用。所以它的有效主要体现在以下几个方面;
1)混合消能支撑系统(VD-BRB系统)有比较高的性价比;
2)对地震波能力可以第一时间反应和削弱消耗,降低建筑本身对抗的风险;
3)可配置子阻尼器合理的在各种自然灾害中发挥作用;
4)采用改进的基于性能和需求的消能减震方法进行加固设计比较便捷。
5)阻尼器的应用有利于改善结构薄弱层的抗震性能;