摘要自2010年4月股指期货推出后,数量化投资逐渐成为我国资本市场的一个热点。对此,本文以投资者熟知的MACD指标为基础,运用遗传算法和模拟退火算法,建立了一个数量化投资模型。该模型的仿真投资收益明显超出大盘,而风险明显低于大盘。本文基于MACD指标建立数量化投资模型的方法简单、有效,可操作性强,可方便地推广至其他技术指标,在数量化投资领域中可能具有广泛的发展前景。
关键词数量化投资MACD遗传算法模拟退火算法
一、研究背景
与传统投资基于各方面信息和个人判断进行操作不同,数量化投资将适当的金融理论、投资经验等反映在数量模型中,然后利用程序软件代替大脑对海量信息进行科学处理,总结归纳市场规律,最终建立可以重复使用的、不依靠个人主观判断的投资策略。
由于数量化投资的操作策略往往经过了严格的验证,具有较强的系统性和规范性,主观随意性较少,风险可测可控,因此随着计算机数据处理能力的迅速提高,数量化投资获得了快速发展,数量化基金的规模亦迅速扩大。据统计,自2003年以来,数量化基金规模的年均增长速度高达15%,而传统型基金规模的增长速度则低于5%。
很显然,科学的数量模型是数量化投资成败的关键。当前,主流的数量模型均考虑了多方面的因素,既包括各种基本面因素,又包括各种技术因素,涉及较为高深的经济学、金融学、技术分析等知识,模型都比较复杂,理解难度较高,甚至令人望而生畏。对此,本文以人们熟知的技术指标为基础,通过引入遗传算法和模拟退火算法对参数进行优化,建立了一种较为简单、有效的数量模型构建方法,希望能为推动我国刚刚起步的数量化投资发展有所帮助。
二、模型框架
由于MACD指标以经平滑后的股票价格为基础,而股票价格包含了绝大部分的基本信息和技术信息,因此本文以MACD指标为基础研究建立相应的数量化投资模型。
(一)MACD公式
MACD是投资者最熟悉的技术指标之一,主要包括EMA、DIF和DEA三个指标,涉及一个已知变量(收盘价P)和三个未知参数(和),公式较为简单。
(二)决策准则
虽然MACD指标的运用方式有很多种,既存在对指标值的应用(如比较DIF和DEA的大小),又存在对形态的应用(如底背离、顶背离等)。对此,本文制定的决策准则相当简单,即:
时,做多
时,做空
三、模型参数优化
(一)参数的科学取值是决定MACD指标投资决策价值的一个关键因素
在一般的技术分析参考书和交易软件中,和通常取12、26和9。然而,该取值并不是最优的。
例如,以2005年1月5日至2010年12月31的沪深300指数为例,根据(公式1)和(公式2),做多业务在和取值12、26和9时,可获得的投资收益为230.55%(收益①);而在和取40、195、130时,可获得的投资收益为651.98%(收益②)。
因此,参数取值是否合理决定了使用MACD指标进行投资决策时投资收益的高低,决定了MACD指标的投资决策价值。
(二)人工智能算法在技术指标参数优化领域中的突出优势
运用MACD指标建立数量化投资模型的关键在于对公式中的三个参数进行优化。然而,虽然参数取值与投资收益间存在确定的函数关系,但该关系并不能用一个表达式予以直接阐述,因此传统的解析方法在此并不适用。而其他传统方法如随机法和穷举法的优化效率不高。在此情况下,可运用人工智能算法有效解决此类优化难题。
遗传算法(GeneticAlgorithms)和模拟退火算法(SimulatedAnnealingAlgorithms)是人工智能的重要分支,两者均从一定的初始值开始,按照明确的规则搜索最优解,并不要求目标函数存在明确的表达式,且具有高效、鲁棒性强等特点。由于技术指标参数与投资收益间的关系相当复杂,不存在明确的函数关系式,因此遗传算法和模拟退火算法在技术指标参数优化领域中具有很高的应用价值。
此外,遗传算法和模拟退火算法的基本原理和运算过程虽然较为复杂,但其运用却相当简单,MATLAB等数据处理软件均提供了现成的工具箱供用户方便地使用,且即使不掌握参数优化的原理和运算过程,也不会对数量模型的研究产生重大影响,因此运用遗传算法和模拟退火算法对技术指标参数进行优化的可操作性强。
(三)遗传算法和模拟退火算法应用举例
1.MATLAB指令
假设投资收益R和参数、间的关系为R=gain(、),则MATLAB的遗传算法指令和模拟退火算法指令分别为:
[x,fval]=ga(@gain,nvars,[],[],[],[],lb,ub,[],options);
[x,fval]=simulannealbnd(@gain,x0,lb,ub,options)。
其中:
x和fval是程序返回值,分别为参数、的最优化取值及其所对应的投资收益;
gain是目标函数,可根据(公式1)、(公式2)和(公式3)编写;
nvars是待优化的参数个数;
x0是参数、的初始值;
lb是参数的下界;
ub是参数的上界;
options是MATLAB指令的设置选项。
寒暄已毕,坐定后,银华基金量化投资部总监周毅用他惯常的平缓语速说道。
《投资者报》记者第一次采访周毅在2010年3月,那时,银华基金正推出国内第一个杠杆指数基金,作为产品的设计者,基金经理也由他担任。
谈及国内基金产品创新,在华尔街做了11年量化投资并参与过房地美等资产抵押债券设计的周毅自谦道,只是将国外的产品移植到中国市场。
从北大计算机系到华尔街操盘手,1998年到2008年期间,周毅亲身体验了互联网泡沫的“过山车”以及次债的摧枯拉朽。
前一次危机“迫使”他转身做了金融,后一次让他下定决心离开华尔街回国。
传统上人们认为,有完善的投资、研究体系才是投资的内涵,但周毅看来,这是投资的一小部分。
“与传统的基于投研平台的投资不同,量化投资更多依靠模型和程序,所以有时候在华尔街,量化投资交易员的地位比较高。”
这算是一个量化投资者的立场。
从北大到华尔街
周毅的求学之路可谓顺利。高中毕业后,他被保送北大,选了当时热门的计算机专业,四年后,在留学热潮中,又赴美国南卡罗来纳大学继续深造。
但求职之路并不平坦。
1998年毕业时,互联网空前繁荣,华尔街互联网人才紧俏。周毅和他的同学们赶上了好时代,不费力就找到了一份薪水不菲、让人眼红的职业。
但此时,互联网泡沫依稀传出咝咝破裂之声。2000年,泡沫终于破灭。
回忆至此,周毅说:“像坐过山车。”
互联网繁荣带来财富以及身处行业的成就感顷刻消失。巨大的落差袭来,周毅的很多同学被迫改行做了律师,而周毅把职业的方向盘打向了美国发达的金融业,主要做计算机量化投资。
投资生涯由此起航。
1999年,他进入美国约翰・霍普金斯大学学习金融,与此同时,利用计算机强项,在普华永道金融服务部做一些量化模型。
在普华永道的八年里,他曾参与了包括导致次贷危机的房地美、房利美等资产抵押证券产品的设计。
普华永道的客户涉及华尔街各大投行和机构,内容囊括股票、债券、期货以及各种衍生品,这对周毅来说,是难得的学习机会。
“这不仅让我的职业方向转到金融,而且让我全面接触到各类金融产品。”
但他也意识到,必须有深度上的提高。2006年,周毅加入在金融衍生品方面领先的巴克莱银行,并在该部门做量化投资,与在华尔街名声凿凿的李祥林共事。
李祥林现任中金风险管理总监,在加速华尔街资产证券市场化方面贡献卓著。有人说,如果不是金融危机爆发,李很可能问鼎诺贝尔经济学奖,这间接说明巴克莱银行对金融衍生品的重视。
研发、利用先进的量化模型,发现定价有偏差的产品,用巴克莱银行的低成本融资赚取差价,这就是周此时的主要工作。
次贷危机爆发后,金融衍生品遭受摧毁性打击。
2008年,周毅以巴克莱亚太公司副董事身份转战香港,做相对简单的股票及债权衍生品投资。此后,为照顾亲人回到北京。
把海外思路带回国
对一个长期与衍生品打交道的人来说,回国能做什么?
“当时直观感觉,自己能做的其实有限。”对A股不了解,在华尔街擅长的东西也用不上。国内投资领域能与其沾边的只有指数基金占主体的量化投资。
量化投资方法是相对于定性投资而言,后者主要靠人力,前者主要靠计算机以及数据模型。
2009年底,周毅加盟银华基金,当时银华量化投资还是一片空白。
摆在他面前最迫切的问题是,该从哪里切入。
“既然不了解A股,我不大可能直接把美国或中国香港市场用的量化投资模型直接应用到A股投资中,这从逻辑上讲不通。”
指数基金被动化管理成了突破口。
根据华尔街的经验,周毅深切地明白,指数基金的产品研发、创新、先发优势最重要。然而,当时国内跟踪沪深300等优质标的指数基金已经很多,在跟踪标的上难以获得先发优势,产品形式创新成为不二选择。
“看到这种情况,我在想,在形式上要有别于国内其他产品,做别人没有的东西,才有取胜的可能性。”
结合国内证券市场的条件及A股的特征,周毅把目光放在了国外已经流行的杠杆指数基金上。
虽然在周毅看来,这算不上什么创新,但在国内首次吃螃蟹,总免不了一些曲折。先想到国外普遍采取与券商做互换的方式做杠杆,然而,由于潜在的信用风险被他否定。
“这条路堵死之后,我们选择了当时国内已经有的分级基金,这虽然不能做完美的杠杆指数基金,但是一定程度上可以实现我的想法。”
经过几个月的奔波,2010年3月,银华深证100分级基金发行,在随后的7月到10月,该基金让市场见识了杠杆基金的魅力。其间,银华深证100锐进份额上涨了109%,而其跟踪的指数深证100上涨了50%。
2010年4月,股指期货推出后,引进做空机制成为现实。
目前,用对冲策略做创新是周的一个着力点。记者了解到,银华旗下已有三只专户产品运用了对冲策略。
“具体做法就是用股指期货空头做等量对冲,其实就是做减法,比如,把超越沪深300指数的收益,通过等量对冲变成绝对收益,尽量降低风险。”
[关键词]量化投资;策略代码;趋势跟踪;回溯
[DOI]10.13939/ki.zgsc.2017.15.135
在如今每位公民都想通过金融产品投资的方式来增加个人资产的时代,量化基金的高收益率逐渐被投资者所知。西蒙斯,一位世界级的数学家以年净赚15亿美元成为全球收入最高的对冲基金经理,名气可谓超过金融巨鳄索罗斯。大奖章年化以35%超越股神巴菲特年化20%的收益神话。而在2016年5月《机构投资者》旗下出版物《阿尔法》公布的“2016年全球收入最高的对冲基金经理”排行榜中前十位有八位为量化基金经理,前25位有一半属于量化分析。由此可见海外对冲基金的焦点正从宏观对冲基金转向量化对冲基金。
而在国内,量化基金正处于起步阶段,国内对于量化投资策略的研究较少。笔者以量化投资平台上自主开发的策略代码为例,通过对代码的编写优化及检验回测,使读者了解到量化投资的可操作性和高回报性。
1量化投资策略概述
量化投资是计算机通过开发者编写的程序来进行分析以及交易整个的品种选择、交易时机、交易方向以及仓位管理都是通过计算机完成。它避免了投资者个人的情绪影响,完全自动化操作,和如今的工业2.0类似。一个稳定的量化投资策略往往可以胜任一位投资者的多种操作策略,尤其在风险管理上量化投资更胜一筹。
国内的主流量化交易平台有文华赢智、TB、金字塔决策交易系统和国泰安量化投资平台等。国内的量化交易平台繁多,而与海外动辄数百上千亿美元的量化基金相比,国内目前量化产品规模总体不大,而严格遵循量化投资理念的基金更少。并且A股市场发展时间较短,与发达国家比起来市场效率低太多,所以A股有很大的市场空间和盈利机会。本文以程序化实现简单、性价比高等特点的文华赢智为程序化交易平台为例,为防止成果泄露,以上证指数为模型进行探究。
首先,笔者先阐述如何建立一个量化投资策略。
(1)交易思路的确立。不仅仅是量化投资,就算是普通的投资者也需要一套自己的交易体系。赚不到钱,赔钱,一直观望,总之,所有交易中的不幸都可以归咎于没有一套自己的交易系统或者自己的交易系统有问题。
(2)将思路编写成投资策略。这一项是量化投资的关键,如何将自己的投资思路转变为C器代码,首先是由你所在的交易平台所搭建的语言决定的,例如文华赢智就是使用的比较简单的麦语言。其次需要对使用的技术指标进行组合搭建,编写出可运行的代码。
(3)在计算机上进行回测,选取最优目标组合和参数。技术指标的参数设置往往决定了整个交易系统的成败,一点点小的误差往往会导致千差万别的结果。笔者格外强调资金管理是投资体系中非常重要的部分,却是大多数投资者忽略的环节,这需要读者进行不断学习研究。
(4)进行实盘操作,在操作中不断完善投资策略,评价该交易代码。评价程序化交易模型性能优劣的指标体系包含很多测试项目,但主要评价指标有年化收益率、最大资产回撤、收益风险比、夏普比率、胜率与盈亏比等。在下文中笔者将对这些评价指标进行分析。
2量化投资策略代码分析:以文华赢智交易平台为例
在文华赢智中,进入趋势模型跟踪编写平台,利用麦语言中已存在的函数进行编写,现笔者将自行编写的其中的一个策略代码贴出:
MA1:=MA(C,N1);//多头均线
RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))×100;//收盘价与N周期最低值做差,N周期最高值与N周期最低值做差,两差之间做比值定义为RSV
K:=EMA(RSV,2×M1-1);//RSV的指数移动平均
D:=EMA(K,2×M2-1);//K值的指数移动平均
C>MA1ANDCROSS(K,D);//MA1均线上方,KD金叉,买入
CROSS(D,K);//KD死叉卖出平仓
参数设置:[N1=10,N=44,M1=M2=27]
笔者需要对参数的设置进行重点提醒。测试参数的不同会对测试结果产生非常大的影响,对于参数的精确设置影响到交易模型的可行与否。
这其中,笔者进行的是顺势交易的代码编写。顺势交易,是顺着当前的趋势进行交易。如果当前趋势上升就买入开仓,当前趋势下跌就卖出开仓。为了防止恶意做空,本策略只进行多头行情的研究,空头行情并没有叠加进来,所以收益率要比双向行情要低。
下面对此策略代码进行回溯。对交易模型的测试结果是否满意主要与品种、时间、手续费费率有关。不同的品种相同的策略有不同的结果,测试的品种越多,越能检验出策略模型的适用性。在时间上,如果所采用的历史数据越少、时间跨度越短,测试的市场状况就越狭窄,策略的可靠性就越差,反之亦然。手续费费率的影响就不用多提,但是有关滑点的问题也是策略需要多加研究的方面。
交易人员最关注的是策略到底能否盈利,能赚多少。交易的盈亏额能完全反映这一点。在如下的季度统计图和年度统计图中可以看出从2009年8月到2014年11月各有盈亏,比较温和,总体的波动幅度并不大。而从2014年11月开始,出现了一直盈利并且幅度较大的状况,尤其是2016年年初的季度,最高的盈利额达到了110354元,这比2014年前总的盈利还要多。而从2016年第一季度后出现了亏损,但是幅度并不大,而后又出现了盈利的情况。该策略在该时间段是盈利的,符合模型最基本的要求,季度统计图和年统计图如图1所示。
交易者在一个策略中拥有的资产总和也是其关注的重点。假如交易者所用的权益小于某一理想的数值,他可能会停止该策略的继续进行,这也是我们常说的回撤问题。在如下的权益曲线图中,交易者的权益几乎是一直递增,并且在2014年年末后斜率变大,由此我们可以得出使用该策略几乎不存在回撤问题,对于交易者的心态有着积极的作用。权益曲线图如图2所示。
每次交易的盈亏额也是交易者关注的问题,如果亏损数量过大,再加上杠杆的作用,可能就会出现爆仓的问题。首先说明,此回溯并没有加进杠杆因素,国内保证金按保守20%计算,也就是5倍杠杆,虽然不太大,可是影响还是有的。在如下的盈亏分布图中,可以看出最大的一笔亏损出现在第500次左右交易时,亏损额为27523,而最大的盈利额也是出现在附近,盈利为32916,看来这附近的波动很大,应该有政策因素在内的影响。该策略总体来说单次盈亏额波动并不大,比较稳健。盈亏分布图如图3所示。
只有图表并不能准确地反映出策略的完全可行性,下面将此策略的测算报告给予公布。
我们从测算报告中可以很容易得出此策略一共测试了2772天,无杠杆收益率为六年50%,而且只是多头策略。而自2017年2月17日结算时起,沪深300、上证50股指期货非套期保值交易保证金调整为20%,所以5倍杠杆的话就为250%。如果只看重策略的收益率却忽略了回撤风险是极其冒险的激进策略。如果策略的收益风险比相同,但是结果还是要取决于资金管理决策。
笔者在此将夏普比率进行说明。评价策略的优劣应从收益值和风险一起考虑。调整风险后的收益率就是一个同时考虑进了收益和风险的指标,能够排除风险对评价的不利影响。1966年,夏普提出了著名的夏普比率:S=(R-r)/σ(R为平均回舐剩r为无风险投资的回报率,σ为回报率的标准方差)。此公式表示为尽量用最合适的方法用小风险换得大回报。如果为正值就说明投资收益比银行存款利息高。比率越大说明所获的风险回报越高。该策略的夏普比率为22.83,可见是一个理想的策略模型。
3结论
笔者所提供的文化赢智策略模型只是量化投资的冰山一角。继续加强量化平台的完善,编写多种多样的策略,研究新的投资模型,实盘验证等将是量化投资的发展重点。
量化投资已经成为金融的一个重要专业领域。国内多家机构投资者都在加大在量化投资方面的投入,加快量化投资的进程。量化投资为机构投资者的投资决策能力的提升提供了新的平台。相信量化投资在中国的前景无限。
参考文献:
[1]韩锦.程序化交易模型的测试与评估[N].期货日报,2015-03-04(003).