首页 > 范文大全 > 计划安排

高数数学建模论文(6篇)

发布人:整理 发布时间:2024-03-28

高数数学建模论文篇1

关键词:高职学生;数学建模;建模能力;培养途径;研究分析

中图分类号:G712文献标志码:A文章编号:1674-9324(2014)48-0253-02

在高职院校的数学教学中重点应该是学生应用数学解决实际问题能力的培养,大量的理论教学更应该结合教学实践,突出学生的动手与思索能力,利用数学知识、数学理论解决生活中的疑难是数学教学的终极目的,在高职教学中具有十分重要的现实性意义。

一、高职院校开展数学建模教学的必要性与意义分析

1.促进高职院校数学教学目标的实现。高职院校教学应更注重对理论知识的实践与应用,注重数学分析与创建能力的提升,实现数学理论知识与现实问题的解决的转化,这是当前高职院校数学教学的既定目标。数学本身的抽象性使得知识理论教学枯燥无味,数学知识始终无法实现与实际问题解决的对接。针对该教育现状,进行数学建模能力的培养是行之有效的手段。

2.调动学生学习积极性,激发创造潜能,提高问题解决能力。在高职院校中开展数学建模教学,一方面调动学生数学学习的积极性,相较于单纯的理论讲解,数学建模能力的教学强调动手与思考,在自由开放的环境下学生学习积极性更加高涨。另一方面在高职院校中开展数学建模能力的培养性教学,有利于激发学生的创造潜能,培养创新能力,弘扬创新精神。

二、高职院校数学建模能力培养与教学现状

1.逐渐关注数学建模能力培养,力度仍需加强。基于课程本身来看,大部分高职院校充分认识到数学建模能力培养的重要性,积极开展了微积分、概率教学、数理统计等专业性学科教学,旨在提高学生的数学建模能力。但是在培养的过程中,常常重视力度不够,在课程教学内容与方法上存在一定的滞后性。重经典、轻理论、重分析与推导,轻数学思想与运算技巧的分析,各部分知识点之间存在断裂,很难自成教学体系,缺乏必要的应用性与联系性,在教学方法与教学内容上还需要不断的尝试与摸索。

2.课时不断压缩,课程无法开展。在高职院校中开展数学建模能力的培养需要一定课时量的支撑,当前教学中因为对课时量的压缩,导致其在教学内容上也有所删减,对数学应用能力的讲解停留在理论表层,缺乏深入的实践展示,数学建模能力培养无法深入进行。

3.教学方式陈旧落后,教学内容单一。在教学方式上高职院校的数学建模能力培养也急需改进,传统的填鸭式教学使得教师是课堂的主导者,学生的自主性不强,教学中单纯强调理论定理与严密的逻辑体系,忽视了学生训练技巧与自由分析能力的讲授与引导。在教学中,教师授课形式单一,考核形式传统落后,缺乏必要的层次性与多样性,不能真实准确地反映学生的数学分析能力与知识掌握程度。

三、高职院校数学建模能力培养的途径探析

1.转变认识观念,高度重视数学建模能力的教学与培养。在进行数学教学时,教师首先要完成教学观念上的转变,充分认识到当前教学整体与自身数学教学的不足,从观念上有所转变,认识到数学建模能力培养的重要性,在思想上高度重视,从整体性与综合性、实用性角度去理解数学,开展数学教学。数学建模是将理论与知识结合起来,在教学中将演绎与归纳渗透到教学中,在实践中加深对数学定理与数学知识的理解与把握,实现数学知识与生活实际的结合,数学教学更应该走出理论教学的限制发挥其应用功能。教师为学生创设自由探讨的课堂氛围,学生在自由的课堂气氛中自由交流,思索,学习建模知识并尝试运用于实践中。

2.大胆尝试各种形式的教学模式。在数学建模能力的培养中,其最鲜明的特点是摆脱传统数学教学的呆板性,将学生的数学积极性调动起来,参与到课堂建模中来。增强教师与学生的双向互动,教师在与学生交流的过程中发现学生学习不足,采用答辩或探究的形式让学生提出自己的想法,开展情境教学或者是小组合作教学,让学生增强对数学转化与应用思想的理解,在多媒体课件与软件的辅助下,借助多样的数学教学模式,学生积极主动地投入到数学建模的转化与应用中去。

3.数学建模应用实践分析。下面是在教学中实际指导学生完成的建模问题节选。

随着社会的发展,文物修缮工作有条不紊地开展,其中古塔受战火、地震、风雨侵蚀等人为和自然的破坏,损坏极为严重,亟需修复与完善。在古塔的修缮中重点是做好古塔倾斜、弯曲变形的分析。古塔因为高度的问题一般不能实现直接测量,我们引入数学模型概念,在其周围建立平面监测点,在塔顶设立变形观测点,至于镜S1,后视S2点,观测各角计算As1sk=arctg,As1s2=arctg,Asky1=arctg,根据获取的观测点数据绘制直观显示变化的折线图,借助折线图的变化清晰展示古塔近几年的倾斜与弯曲情况。古塔不同监测期的倾斜度折线图。

上升的折线图直观告诉我们古塔每年弯曲的程度不断加重。对近几年古塔的倾斜程度进行总结,制成数据表格(见表1),辅助识别古塔倾斜变化情况。在气温,风力等因素的情况下将以每年0.023mm的速度进行重心偏移,角度倾斜度会慢慢增大,如果不采取措施及时补救与完善,古塔将岌岌可危。

四、结束语

高职院校作为相对独立的教学类型,在教学目标及教学内容上更注重对学生实际操作技能的培养,为国家输出技术型人才,在这样的教学要求与背景下,积极开展数学建模教学,培养学生的建模能力,对于激发其创新潜能,增强创新能力,促进数学理论教学与生活问题的接轨都有着重要意义。

参考文献:

[1]李占光.高职学生数学建模能力的现状及对策[J].企业家天地,2009,(6).

高数数学建模论文篇2

关键词:数学建模综合能力竞赛

一、引言

数学技术[1]在很多领域中得以广泛应用,数学建模[2]起了关键作用。使用数学技术时,最重要的一步就是建立研究对象的数学模型,然后加以计算求解,分析模型的可行性,并对其进行应用和推广。

计算机技术的发展与成熟,提升了数学模型在工程技术、自然科学等领域中的地位。数学建模技术,以前所未有的广度和深度向经济金融、生物医学、环境、地质、人口、交通、化工等领域渗透,尤其对所研究问题的量化方面发挥了重要作用。培养学生的建立数学模型和使用数学模型的能力,在国内外引起了共鸣。各种级别、规模的数学建模竞赛,加快了数学建模在高校的普及速度。如美国大学生数学建模竞赛和国内各级别的数学建模竞赛,在校师生则对这些比赛给予了积极响应。

相对于传统的数学教学,数学建模是注重理论联系实际的课程,着重对学生进行严格的数学理论和技巧的训练,把对学生的创新能力、思维观察能力、科研能力等能力的培养作为主要任务,而在校学生亟须得到这些能力的培养和训练。本文结合数学建模课程和数学建模竞赛两个方面,对数学建模对学生综合能力方面的培养做了探讨。

二、数学建模课程和竞赛的目的

高等数学教学的目的是培养学生的计算能力和逻辑思维能力。对于数学建模的目的,我们可以从开设数学建模课程的目的和参与数学建模竞赛的目的两个方面讨论。

开设数学建模课程的目的在于:让学生熟悉数学建模的基本内容和常见的数学建模的方法;“授人以鱼,不如授人以渔”,课堂上讲的方法毕竟是有限的,在方法的学习中,让学生学会独立和协作处理实际问题的方法才是重要的。

数学建模竞赛通常以2―3个实际问题的形式出现,并明确要解决的问题。这些实际问题尽管出自不同的领域,但是在求解时,往往会留很大的空间,以便发挥学生的创造性。其目的在于:调动学生学习数学的积极性,体会数学的应用价值和培养数学应用的意识;提高学生应用数学和计算机解决实际问题的能力;培养学生的创造精神和团队合作意识;促进学科交叉。

数学建模不能以获得较高的奖项作为最终目的,而是在这个过程中得到了怎样的锻炼。学习和建立模型的过程是一个能力得到逐渐培养的过程,是各方面知识积累的过程,任何的投机取巧的行为都是要不得的,学生在此过程中需要定心地完成每一步。

三、数学建模的作用

数学建模能够被很多学生和高校接受,这与它所起的积极作用密不可分。从高等学校角度来说,数学建模的重要作用主要体现在以下三个方面。

1.数学建模在数学理论研究和实际应用中起了举足轻重的桥梁作用,使数学与工程问题有机结合,数学家和工程师可以无障碍地沟通与合作。具体的应用主要体现在分析与设计、预测与决策、控制与优化、规划与管理等方面[3]。

2.数学建模在培养高质量、高层次科技创新人才中起到了关键作用。数学建模本身就是一个创造性的思维过程,从数学建模的教学内容、教学方法,以及一系列的数学建模竞赛的培训都是围绕一个培养创新型人才这个核心主题内容进行的,其内容取材于实际,方法结合于实际,结果应用于实际。总之,知识的创新、方法的创新、结果的创新、应用的创新无不在数学建模的过程中得到体现,这正是数学建模的创新所在。

3.在大学数学教学改革中起到了推动和深化作用。传统的教学方式是教师讲授,学生被动地听,师生之间没有良好的互动,导致课堂枯燥乏味,降低了学生的学习兴趣,从而导致教学质量下降。解决该问题的有效途径之一就是在教学中引入数学建模。一方面,数学建模题目具有开放性,没有固定的方法和答案,从而不会限制学生的思维,可以采用不同的方法和方式求解。教师若能在相应的课堂内容上,引入适当的数学模型,让学生参与其中,无论学生做得好还是不好,对学生和教师来说,都是双赢的。学生在求解过程中会用的所学的知识,甚至是教材中学不到的知识,提高他们即学即用的能力,还可以培养他们的学习兴趣,从而提高学习质量;对教师而言,可以丰富教学手段和教学内容。另一方面,引入数学建模可以师生交换角色,有些模型可以让学生讲,老师听。这样更能调动学生的积极性,同时对学生来说也是一种锻炼[4]。

总之,数学建模课程和竞赛可以培养学生理论联系实际的能力,可以推动大学数学教学改革。而数学建模在培养学生的综合能力方面具有重要的作用,主要体现在如下方面。

四、数学建模对大学生综合能力的培养

1.培养学生的想象力和解决实际问题的能力。大学数学教学中,只是要求学生做一些相关的题目,巩固所学知识,这不仅没有体现数学的真正用途,而且限制了学生的思维方式和创新能力。结合数学建模的大学数学教学,可以不断激发和提高学生的想象力和动手能力。在教学过程中引入数学建模,在平时留适当的研究课题,让学生利用数学模型求解,让学生体会到数学知识不仅可以求解数学问题,还可以很巧妙地解决实际问题,这样不仅提高了学生学习数学的积极性,更提高了他们利用数学知识解决实际问题的能力。针对实际问题,学生可以找到它的关键部分,对其进行深入分析,借助学到的知识与每个人的丰富想象力和创造性,得到一个好的数学模型和合理的结果。比如2010年全国大学生数模竞赛B题,要求学生从感兴趣的某个方面建立模型,定量分析上海世博会的影响力。这个题目给学留下了很大的空间,学生可以从不同的侧面建立模型,如科学技术、历史文化、合作管理等方面。

2.培养学生的表达能力。对数学建模课程的考核方式或作业,采用与竞赛类似的形式,三个人为一组提交报告或论文。在这个建模过程中,学生会受到口头表达能力和书面表达能力的训练。

(1)口头表达能力。为得到一个好的报告或论文,学生就会围绕所做的东西进行认真深入的讨论,某个学生的一个好的想法如何让另外两个同学明白,依靠该同学的口头表达能力,如果表达不出来或者表达不明确,再好的想法也无法付诸实践。所以在平时的训练和模拟比赛中,要求学生之间尽可能多地沟通和交流,使其在表达时能够做到语言简洁、准确,方便队友理解。

(2)书面表达能力。当一个小课题或竞赛结束时,学生需要提交一份报告或论文,展示他们的想法、模型和结果,依靠的就是书面表达能力。文字表述的是否准确恰当,数学符号和公式、图形、图表是否合理到位,是否有相应的分析说明,报告和论文的整体是否结构严谨、层次是否分明等。这些并不是一下子就能做得好的,需要经过多次练习,反复修改、斟酌才可以。

3.培养学生的团队意识和协作能力。随着社会的进步,竞争日益激烈,为在竞争中立足,在各行各业中,都要求以团队的形式参与竞争。因此,学生在校期间就要有良好的团队精神和协作意识方面的训练。一些社团活动对培养学生的团队意识、大局观念有一定的帮助,而在数学建模中更能体现这一点,学生为了使提交的报告或论文尽可能完善,需要三个人群策群力、分工明确,相互合作、相互信任、相互鼓励,才能最终实现既定的目标。笔者在培训和指导数学建模比赛过程中,遇到两个很典型的例子。一个各方面能力很出色的学生,第一次参加全国数模比赛时,自认为受制于同组中的高年级的队友,表现出来明显的不合作姿态,结果三人无功而返。第二次参赛时,该同学又不信任队友,几乎包办了所有的工作,查资料、编程、写论文等,结果还是无功而返。另外一个例子是,由于各种原因有三个学生被迫组成一队参加竞赛,但是这三个学生配合得非常默契,最后获得了我校当年的最高奖项全国二等奖。从上面的两个例子中,我们可以看出合作的重要性。团队合作往往能激发出不可思议的潜力,集体协作干出的成果往往能超过成员个人成绩的总和,正所谓“同心山成玉,协力土变金”。如果一个团体组织涣散,人人自行其是,个人再有雄心斗志,也难以得到充分发挥。一个毕业生如果具有了良好的团队精神和协助意识,一定会在今后的工作中受益。

4.培养学生的科研能力。每个学生在毕业时都会做的一件事就是做毕业设计,这就要求学生要有最基本的科研能力。有的同学会继续深造,更应该有较扎实的科研功底,如:查阅文献资料的能力、分析解决问题的能力、熟练使用计算机的能力。

(1)数学建模是多学科知识和技能的综合运用,所用到的知识未必学过,那么学生可以在老师的启发下,可以利用图书馆、网络等资源,如:中国期刊网、IEEE、谷歌学术、百度百科等,围绕所做的题目,采取广泛查阅相关资料、部分深入学习研究的方法,从中提取自己所需要的信息。

(2)应用计算机求解数学模型,是数学建模非常重要的环节。有些问题学生需要设计算法,利用一些计算软件编写程序,如Matlab等,最后求出结果;而有的问题中含有大量的数据,如果手工其处理这些数据,可操作性和效率就可想而知了。如2009年全国研究生数学建模竞赛中弹壳的划痕问题,2014年美国大学生数学建模竞赛中关于合作者网络模型问题[5]。在对模型验证时要做仿真,没有计算机的辅助几乎就是不可完成的任务。在写论文时,所用到的图表、结果分析、论文的排版等工作时,计算机可以提供帮助。因此,数学建模活动对提高学生计算机操作能力是一种重要的途径。

5.培养学生的竞争能力、自控能力和心理承受能力。竞争能力是人们顺利完成某项活动必备的一种心理特征,也是大学生及至人类都在追求的一种能力品质。现在的大学生已经基本上意识到竞争能力是自身发展和社会发展的需要;是实力的一种展示方式,掌握更多的技能技巧,善于抓住机会,勇于展示自己才会在竞争社会中获胜。作为平时模拟训练的一种检验手段,组织学生参加国内外数模竞赛,在检验自己的同时,也增强他们的竞争意识,促进他们与其他高校的学生的交流,发现不足之处后加以弥补。

建模过程中最难的一步就是会随时遇到各种各样的难题或困难,好的想法无法实现,与其他队友的意见不统一,要用到没有学过或者没有见得到过的知识,在有限的时间里,任务重,压力大,等等。这时学生要学会如何克服这些困难,指导老师给予鼓励,要有不轻言放弃的斗志,冷静思考,沉着应战,当一个个的困难被解决掉后,会有一种成就感,回顾整个过程,发现摆在面前的最大困难实际上就是自己,战胜了自己,一切困难都可以解决。

五、结语

数学建模无论是教学内容上,还是教学方式上,都有很强的灵活性,不仅可以培养学生应用数学知识解决实际问题的意识,还可以锻炼学生的综合能力。除上述讲到的能力之外,对学生的其他能力也很有帮助,如:组织能力、决策能力等。有些能力的培养都是很多社会活动和社团活动所不能比拟的,因此经常组织学生参与数学建模的训练、比赛,对学生今后的发展有很大的帮助。

如何使更多的学生参与到数学建模中,如何更有效地组织学生参加数学建模竞赛,如何将数学建模这个课程开设得更具有吸引力,如何将数学建模融入到大学数学教学中,这些都是有待进一步研究的课题。

参考文献:

[1]孙旭花,谢文彪.数学技术对于新世纪数学教育的意义[J].数学教育学报,2004,23(1):68-70.

[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2005.

[3]张建勇,张斌武.数学建模思想在大学数学教学过程中的应用探讨[J].台州学院学报,2010,32(6):76-80.

高数数学建模论文篇3

【关键词】数学建模建模竞赛工作总结

ˎ̥【Abstract】thisarticlethroughtoourwhotookpartin2011nationalcollegemathematicalmodelingcontestandobtainthesecondprizeinthesomefeelingandharvestwassummarized.Butbecauseofthelimitation,inordertomobilizemoststudentsstudymathematicsenthusiasm,tobettercarryoutthemathematicalcontestinmodelingthestudents'extracurricularscienceandtechnologyactivities,wehavecarriedoutanewattemptandexploration-established"mathematicalmodeling"studentcommunity,sothatmorestudentsunderstandmathematicalmodeling,thusrealizetheextensiveapplicationofmathematics.

【keywords】mathematicalmodelingcontestinmodelingworksummary

中图分类号:G623.5文献标识码:A文章编号:

“高教社杯”全国大学生数学建模竞赛是国家教委和中国工业与应用数学学会共同主办的、面向全国大学生的群众性科技活动,目的在于激发学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,激励广大学生踊跃参加课外科技活动,开拓知识面,培养创新精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

2011年,武汉城市职业学院首次派代表队参加全国大学生数学建模竞赛,由于领导支持、组织得当,取得了全国专科组二等奖的好成绩。总结我院参赛经验,主要有以下几个方面。

一、领导高度重视数学建模竞赛活动

我院在全国大学生数学建模竞赛活动中取得优异的成绩,和学院、系部领导的高度重视是密不可分的。我院于2011年成立了“数学建模领导小组”和“数学建模指导小组”,协调各项工作,出台了参加建模竞赛的补助及奖励办法,有专门的数学建模竞赛实验室,集训和竞赛期间,学院、教务处和经管系领导亲自动员并多次亲临现场看望。各级领导和有关部门的重视和支持是这项竞赛活动取得成功的重要保障。

二、组建了一支强有力的辅导教师队伍

在数学建模集训中,辅导教师是核心,辅导老师也是保证培训效果和竞赛成功的关键。我们成立了数学建模教学小组,集体备课,大家群策群力,共同探讨。在暑期集训期间,从不计较个人得失,放弃了周六、周日的休息时间,和同学们一起战酷暑高温。在竞赛过程中,布置好竞赛机房、网络,安排好学生的伙食、住宿、竞赛必需品,在选题、督促进度方面给予适当的指导,在11日晚上陪学生熬夜奋战,最终经过72小时的不懈努力,顺利地解决了竞赛题,提交了完整的论文,竞赛圆满结束。成绩的取得离不开指导老师的辛勤耕耘。

三、在课程设置上给学生打下坚实的基础

尽管我们是第一次参加比赛,但我院已于2001年开始在数学教育专业“二下”开设了“数学建模”课,每周四节。作为指导老师,深刻钻研了近几年的建模竞赛专科题,经常与兄弟院校进行交流、取经,邀请在建模方面有专长、有造诣的专家教授来院讲学。

四、选拔优秀学生组队培训和参赛

数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩,确定参赛后,在“二下”一学期的建模课中注意观察学生的动手、动脑能力及计算机使用、编程能力,通过第一阶段的培训后选拔出参加暑期集训的队员,主要围绕以下几个方面选拔队员:首先,选拔那些对数学建模活动有浓厚兴趣的同学;其次,选拔那些有创造能力、勤于思考、数学功底好的同学;最后,注意参赛队员的能力搭配和团结协作,参赛的每支代表尽可能由具有不同特长的学生组成。

五、科学、系统的培训方法

经过摸索,笔者认为具有特色又实用的建模培训方法应分为三个阶段:第一阶段为基础知识培训阶段,包括:1.补充学生欠缺的数学知识。2.计算机基础知识、数学软件及文字处理软件的使用。3.简单数学模型的建立与求解。第二阶段为数学建模常用的方法和范例讲评,包括网络模型、运筹与优化模型、种群生态学模型、微分方程模型、随机模型、层次分析法、数据拟合、计算机仿真。第三阶段为历年建模试题评析、讨论、建模论文的撰写。通过三个阶段的培训,学生已初步具备了参赛的能力,最终经过测试选拔出参赛队员。

六、重视参赛过程的指导

在学生参赛过程中,指导老师的及时指导是学生完成竞赛的保证。主要体现在以下几个方面:一是作好参赛队员的心理方面的指导。在竞赛的三天里,要连续进行72小时的奋战,并且要与同组的队员合作,不可避免地会出现心里及身体方面的问题,因此,指导老师要及时给予鼓励与关心,做好细致的思想工作,在整体培训过程中要不断强调团结协作的重要性,这将是学生完成竞赛的动力。二是作好论文细节方面的指导。在竞赛的最后阶段,指导老师要提醒学生注意论文的格式,检查是否按要求撰写论文,论文的摘要、关键词是否写得好,论文是否完整等,这些细节常常成为论文是否取得好成绩的关键。

七、对建模竞赛工作的探索---以学生社团活动带动数学建模竞赛活动的日常开展

数学建模竞赛存在以下弊端:

1、学生参赛人数少,大多数学生得不到锻炼。

2、在数学教学过程中对数学应用仍然重视不够

3、学生对学习数学缺乏兴趣

为了调动大多数学生学习数学积极性,更好地开展数学建模竞赛这一学生课外科技活动,我们进行了新的尝试和探讨---成立了“数学建模”学生社团,利用学生社团开展了一系列活动:

1.举办了关于“数学建模”的讲座,使广大数学爱好者了解数学建模;

2.举行了“数学建模经验交流会”,邀请指导老师和参加过数学建模竞赛的学生介绍建模心得体会。

3.在校园中营造良好的文化氛围、宣传数学建模知识等,潜移默化地使学生逐步认识数学建模,了解数学建模知识,感觉数学建模并不陌生,而是与大家息息相关。充分展示了数学应用广泛性。

4.尝试将数学建模的思想引入高等数学课程教学,使理论学习和应用实践相结合,让学生在做中学、学中做,逐渐培养学生的数学思维、数学态度和数学兴趣。

为推动数学建模活动在我院进一步开展,我们将不断开拓创新,克服困难,将日常的数学教学与建模培训联系在一起,力争再创佳绩。

高数数学建模论文篇4

随着科技的快速发展,社会对应用型人才的需求日趋增加,高校教育必须加强对学生创新能力和解决实践问题能力的培养[1]。数学建模正是衔接创造性思维与实际应用的纽带,通过数学建模课程学习及实践训练,学生不仅能了解数学的应用价值,也能锻炼创新实践能力。由于数学建模课程的内容涉及的领域多,案例式授课,实际应用性强,与所学的高等数学、工程数学课程不同,不能形成连贯的系统性知识点,学生很难接受这门课程的学习方式。为了让学生更好地学习数学建模,教师要改进教学模式,根据教学规律的要求,探索数学建模教学方法,将有助于学生掌握数学建模技能,从而提高解决实际问题的能力[2—4]。

二、数学建模的认知

大学开设基础数学课程能让学生体会到数学的严密逻辑体系及高度抽象的思维方法,但对数学的实际应用介绍的甚少,很难将数学与工程技术、经济管理、生物信息等其他领域联系起来。数学建模是用数学语言来描述实际问题,将它变成一个数学问题,再利用现有的数学工具或发展新的数学工具来加以解决的整个过程。通过数学建模学习与实践,学生在体验建模过程的同时提高了思维能力和创造能力。数学建模课程的学习,可以重新认识数学的作用。课程重点就是介绍数学应用到实际领域中的方法,结合案例,应用初等数学、高等数学等数学知识来解决不同领域问题。在现实中许多现象及问题都可以用到数学来解释,如,我们看到一个四条腿椅子经过简单的移动就可以找到合适的位置放稳现象,用高等数学中的“零点存在定理”很容易解释这个问题;若知道某珍稀动物各年龄段数量信息,来推测未来种群是否会灭绝,可以用线性代数中的“矩阵”预测未来动物数量分布。书报供应商订购多少数量的商品才能得到最大收益呢?用概率中的“数学期望”建立报童卖报优化数学模型可解决这类问题。数学建模竞赛实践能更好地培养和提高学生应用数学知识分析问题、解决问题的能力。几年来,数学建模竞赛赛题背景知识广泛,要想取得好成绩,不仅要掌握扎实的数学基础,较好的计算软件使用方法,还需要较强的自学能力,广泛涉猎诸如物理、生物、信息等知识。例如,2012年美国大学生数学建模竞赛A题“树与树叶”,需要了解植物树叶生长特点,涉及到生物学知识;2014年全国大学生数学建模赛题A题“嫦娥三号软着陆轨道设计与控制策略”涉及到万有引力定律知识。数学建模是以数学为基础,综合自然科学和社会科学的实践活动。学生们可以通过多种途径了解数学建模,如,与数学建模课程教师咨询、与参加数学建模系列教学活动的同学交流,浏览数学建模网上的数学建模课程介绍及阅读数学建模书籍等,以获得更多的数学建模知识与信息。

三、数学建模学习过程

在学习过程中不仅要掌握数学建模的基本方法、数学建模思维模式,同时还要能以团队形式自主完成一整套数学建模训练题目,才能体会数学建模的真正内涵。目前,最行之有效的途径就是参加一次数学建模竞赛。可将数学建模过程分解为三个阶段:数学建模课程学习,数学建模综合培训,数学建模竞赛及课外科技活动。

1.数学建模课程学习

(1)掌握数学建模的基本方法。数学建模基本方法介绍是从案例分析开始,首先了解问题的背景、要解决的问题,分析用什么数学方法描述问题符合的规律,建立数学模型,并对模型求解,解释结果合理性。可以紧跟教师思路,积极展开思考,比较自己的解题思路与教师所讲有哪些不同,从简单的初等数学建模方法入手,了解数学建模的全过程。例如,鱼的重量估计问题,在没有称重的条件下如何根据鱼的长度估计鱼的重量呢?在合理的假设下,利用初等比例方法建立鱼重量与长度数学模型,利用鱼的长度能估计出鱼的重量,经验证结果是有效的。然后,要结合所学的数学知识逐步学习一些基本的建模方法,例如,微分方程建立传染病模型可以预测流感流行趋势问题;概率统计方法建立的报童模型可以预测出订购多少报能获得最佳受益。最后,要学会模仿案例建模过程完成作业,掌握建模的基本方法和技巧。数学建模过程不是解应用题,虽然没有唯一途径,但也有一定规律可循,在学习中要善于思考,慢慢形成建模思维方式,有助于建模能力的提高。

(2)养成良好的自学习惯。数学建模课时有限,许多数学建模方法及案例不能在课堂上介绍,在课余时间同学们可以选读一些教材中的案例和在期刊公开发表的建模论文,细致研读案例的建模思想,学会举一反三,重点是学会分析问题,了解更多领域的数学建模的方法、新颖的建模思想,提高用数学方法解决问题的能力。还可以丰富建模信息量,提高建模能力。同时,还可看到同一问题,可以选用不同的数学方法、从不同角度加以解决,这也是数学建模的魅力所在。例如,锁具装箱问题,可以用排列组合方法,也可用图论方法,都能给出减少锁具互开的装箱方案。

2.数学建模综合培训

(1)数学建模方法再学习和建模能力强化训练。随着数学建模解决问题多元化发展,基本的数学建模方法及计算能力远远满足不了实际问题的需求。因此还应学习一些现代数学方法,如,图论,模糊数学,多元统计分析等。学会熟练运用计算机软件技能,如,数学软件MATLAB,EXCEL数据处理,求解数学规划软件及统计软件。

(2)阅读建模论文。通过仔细阅读刊登在杂志或数学建模网站上的数学建模论文,学习论文的整体层次结构,写作技巧,对问题的分析、假设、模型建立和求解过程。寻找论文的优缺点,并比对论文作者对论文的评价。要善于总结所读的论文中解决问题的适用类型,如,优化类,预测类等,对于不同问题采用什么方法更合适,以备后继数学建模中使用。还可以提出自己的一些想法,改进别人做过的模型,或完成其中运算过程。数学建模是一项没有标准答案的数学应用,模型的研究结果大致符合实际就好。

(3)数学建模模拟训练。选作历年数学建模竞赛题目或实际问题中提炼出来的数学建模题目,学习查阅资料、分析问题、建立数学模型、使用软件求解、论文写作来模拟数学建模全过程。请教师对论文的摘要、结构、模型的准确性、论文语言表述、格式规范等方面提出建议,再经过多轮修改,直至满意为止。

3.参加数学建模实践活动

(1)数学建模竞赛。参加数学建模竞赛是培养综合应用数学知识解决实际问题的最有效途径之一,参加一次数学建模竞赛才能体会数学的真正魅力。目前开展的数学建模竞赛可以分为四个层面,一是美国大学生数学建模竞赛(MCM/ICM),是由美国数学及其应用联合会(CO-MAP)主办,并得到了SIAM,NSA,INFORMS等多个组织的赞助,是一项具有世界影响的国际级竞赛,为现今各类数学建模竞赛的鼻祖。二是全国大学生数学建模竞赛(CUMCM),是由教育部高等教育司、中国工业与应用数学学会联合主办,并得到了高等教育出版社、美国COMAP公司的支持与赞助,是一项全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。三是地区级、省级、专业类别赛事,如,东三省数学建模联赛是由黑、吉、辽三省高校联合发起的科技赛事;电工杯数学建模竞赛是由中国电机工程学会电工数学专业委员会主办的科技活动;数学中国数学建模国际赛(小美赛)是由内蒙古自治区数学学会与数学中国(www.madio.net)和第五维信息技术有限公司协办的全国性数学建模活动。四是由校级开展的数学建模竞赛活动。在竞赛中,调整好心态、应用好文献资源、积极思考、发挥每个队员的长处、合理分工是取得成绩的必要条件。

(2)数学建模实践。要善于发现学习和生活中的诸多问题,要学会用数学的眼光看待问题,要用数学建模的方法来解决。例如,在课程设计、毕业设计中,在校园生活中,可能面临着方方面面的问题。要学会观察实际现象,提炼出要解决的问题。要真正做到学会发现问题、解决问题,这需要一定的练习过程,也是学好数学建模的必要环节,可以提升自身的综合素质和创新能力。

四、数学建模提高学生的综合能力

一次参赛,终身受益。数学建模最能激发人的潜能,数学建模思维方式会影响学生今后的学习和工作方法。数学建模教学内容及教学方法对培养学生的综合能力尤为突出。主要体现在:

(1)培养学生的想象力、洞察力和创新能力。不论是数学建模课程学习还是实践,都是针对实际问题,需要学生主动查阅文献资料和学习新知识,主动探索,提出解决方案,这种学习方式促进了创新能力的形成,也培养了学生从事科研工作的初步能力;同时增强了运用数学知识和计算机技术解决实际问题的能力和团队协作能力。

高数数学建模论文篇5

关键词:建模;“物理-数学”模型;物理情境

中图分类号:G633.7文献标识码:A文章编号:1003-6148(2016)4-0019-5

受当前课程体系中物理和数学相互独立的影响,学生往往缺乏用数学的眼光来学习和解决物理问题的意识,这给高中物理教学带来了一定的困扰。

本文结合亚利桑那州立大学理论物理学家DavidHestene及其研究生IbrahimHalloun关于建模教学(ModelingInstruction)的研究,论述如何在高中物理课程中建立“物理-数学”模型,并提出了构建“物理-数学”模型的详细策略,旨在通过建模活动引导学生树立“物理-数学”模型意识,学会在高中物理中合理地运用数学知识。

1DavidHestene、IbrahimHalloun建模教学理论简介

DavidHestene是建模教学的创立者,他于上世纪80年代初期开始研究模型在物理教学中的发展和应用,并一直得到“美国国家科学基金会”的资助[1]。

DavidHestene认为,物理建模就是“在具体物理情景中,根据实践需要建立物理模型,进而对物理模型进行分析讨论,验证其是否正确,最后将其应用于解决问题”[2]。1995年DavidHestene在他的论文《Modelingsoftwareforlearninganddoingphysics:ThinkingPhysicsforTeaching》中论述了建模的3个步骤:模型建立、模型分析、模型验证,初步建立了物理建模教学的过程(如图1所示)。

图1DavidHestene的建模过程[3]

IbrahimHalloun在DavidHestene的研究基础上,进一步将模型分为范围、成分、结构、组织等4个维度,同时将建模过程细化为模型选择、模型建立、模型验证、模型分析、模型拓展等5个阶段,强调根据个人的经验选择合适的模型,并将已建立的模型进行迁移运用。

2DavidHestene、IbrahimHalloun建模教学理论的启示

DavidHestene和IbrahimHalloun建模教学的具体价值在于引导学生分析问题、构建知识,这给笔者带来如下启示:

(1)在高中物理课程中运用数学工具的关键在于对相关物理问题进行“物理-数学”分析,并构建“物理-数学”知识体系;

(2)“物理-数学”知识体系的构建即“物理-数学”建模;

(3)“物理-数学”模型指的是物理课程中体现物理现象、物理情境、物理概念和规律的数学图形、数学图表、数学过程和数学关系,它具有明确的范围、成分、结构和组织;

(4)“物理-数学”建模指的是从物理现象、物理情境中挖掘出物理元素(即物理量)或参数,通过分析物理元素或参数的特征找出它们之间的数理关系,并通过数学方法建立和呈现出来;

(5)“物理-数学”分析一方面指的是分析物理元素或参数之间的数理关系,另一方面指的是运用“物理-数学”模型分析具体的物理问题,也就是IbrahimHalloun在DavidHestene的基础上提出的模型验证、模型分析和模型拓展;

(6)构建“物理-数学”模型是学生对相关物理问题进行“物理-数学”分析的基础,是培养学生从数学角度分析物理问题、解决物理问题的能力的具体方案。

3构建“物理-数学”模型的策略

3.1构建“物理-数学”模型的策略结构

结合高中物理课程特点以及DavidHestene、IbrahimHalloun的建模教学所带来的启示,笔者认为在高中物理课程中构建“物理-数学”模型需要把握住以下几个关键点:

(1)“物理-数学”模型源自于具体的物理情境;

(2)“物理-数学”模型需要建立在实践的基础上;

(3)浅显易懂是高中物理课程中“物理-数学”模型的最基本要求;

(4)学生感知到物理现象、物理情境中的数学知识是成功构建“物理-数学”模型的关键。

结合上述关键点,本文提出了在高中物理课程中构建“物理-数学”模型的策略结构(如图2)。

上图中的策略结构在DavidHestene、IbrahimHalloun建模理论的基础上着重强调物理情境的分析,并强调学生对物理情境分析过程中情境元素、元素特征背后的数学过程、数学关系的感知。

3.2构建“物理-数学”模型的详细论述

构建“物理-数学”模型离不开物理情境、实例和新物理情境中的实践,下文将从“基于问题情境的‘物理-数学’模型的选择和建立”“基于实例的‘物理-数学’模型的验证与分析”几个方面进行详细论述。

3.2.1基于物理情境的“物理-数学”模型的选择和建立

一个有效的“物理-数学”模型的构建依赖于具体的物理情境,学生需要借助物理情境来感知物理中的数学知识与运用,其处理过程如表1所示。

高数数学建模论文篇6

[关键词]数学建模教学应用能力综合能力

[中图分类号]G640[文献标识码]A[文章编号]2095-3437(2015)06-0063-02

数学建模是目前大学各个专业开设的一门公共选修课程,是数学专业学生的一门必修课程。数学建模是将理论知识与实际问题联系紧密的一门课程,它所涉及的知识面宽广程度是其他数学课程所不及的。而每年一次全国大学生数学建模竞赛和美国大学生数学建模竞赛的开展,对大学生的知识应用能力、计算编程能力、文献检索能力、相互沟通和表达能力、中英文科技文的写作能力等提出了较高的要求,同时也为这门课程的教学提供了一个很好的实践平台,特别是三人为一组的合作方式让学生体会到了团队合作的重要性。数学建模课程的以上特点使学生学习该课程以及参与竞赛的积极性很高,也因此为培养和激发学生的创新思维和综合能力提供了一个良好的途径。笔者多年从事数学建模的教学与建模竞赛的指导工作,针对数学建模课程的特点,就激发和培养学生创新思维、应用知识解决问题的能力、科学计算能力、合作学习能力、文献检索能力以及科技文写作能力等谈谈有关的一些做法和体会。

一、巩固基础理论知识,拓宽知识面,培养学生应用知识的能力

应用能力,就是运用所学知识分析和解决实际问题的能力,这是教学的重要目标,是创新能力的重要基础和组成部分。[1]大学教育的最终目的是培养高素质的创新型人才,而应用知识的能力是培养创新能力的基础。[2]

(一)巩固和拓宽基础理论与方法,是创新能力的立足之本

数学建模的教学对象是大学二年级学生,数学建模的教学内容选择最优化理论与方法、微分方程、图与网络算法、数据的统计处理方法等应用性较强的内容,教学目标以巩固基础理论为主,并拓宽知识面和加强知识的应用,以达到对数学理论和方法的融会贯通。在这个阶段以课堂讲授为主,以课后练习为辅。在课堂教学环节,以问题分析开场,引入理论知识,再以解决问题结束,同时把解决问题需要用到的相关工具软件介绍给学生。课后练习以应用型题目为主,学生以自由讨论、分组协作的方式完成。由于大学数学教材中配套的例题和习题中应用型和综合性的题目很少,虽然这些习题的练习对学生进一步理解知识、掌握方法是必要的,但是如果学生只停留在会做一些题目和考试拿高分上则是远远不够的。因此需要加强应用型题目的练习,题目类型与讲授的理论知识相匹配,目的是让学生通过做这些应用型的题目来加强理论知识与实际问题的联系,更好地理解数学方法在实际中的应用,从而加深对数学理论知识的理解,增强理论联系实际的意识。

(二)解决大型应用型问题,是全面提高应用能力的有效手段

课堂教学阶段,学生接触到更多的数学理论与方法,了解了常用的工具软件,大部分学生也学习过Mat?鄄lab和C++等编程语言,此时可借助计算机等现代化工具解决一些科研或者生产生活实践中的问题,教学的主要目标是全面提高学生应用知识的能力。学生以分组的形式完成各种类型的问题,借助计算机、工具软件等,解决大型的应用型问题,将自己解决问题的出发点、所用的方法和得到的结论用语言、图表等表达出来,同时以科技文的形式给出问题的解答,然后进行答辩。在答辩环节,各个小组要充分展示对问题的理解和思考,展示解决问题的方法和技巧。各个小组之间通过对比,特别是针对一些难点问题的处理和讨论,使学生学习到不同方法处理问题的优缺点,对不确定问题的处理让学生了解了随机数学的思维与方法、模糊数学处理问题的方法等,这是在其他课程中所不能涉及的一项内容。这个过程增强了学生运用数学知识处理问题的意识和能力,是全面提高学生应用能力的有效手段。

(三)借助计算机工具,是培养学生科学计算能力的必要措施

科学计算是平行于理论研究和科学实验的第三大科研手段,计算能力是学生综合能力的一个重要指标,而目前我国学生科学计算能力普遍偏低已经成为我国高等教育教学的一个突出问题。现行大学数学的很多教学内容,包括例题和习题,严重忽视学生计算能力的训练和培养。科学计算包括数值计算、计算机模拟和符号演算等内容。数学建模课程中,对实际问题建立数学模型后,面临的就是算法设计、编程或是结合软件包在计算机上进行求解了。综合问题的求解对学生的计算能力提出了比较大的挑战。由于大学课程中没有设置科学计算方面的专门课程,而理论结果和方法在实际问题中的应用,还存在着一些需要进一步处理的问题,例如数据的预处理,各种工具软件包的使用等,甚至求分位点这些小计算都要有相应的算法,这是理论课程中所没有接触到的。数学建模的教学实践过程中,对学生的科学计算能力的培训也是一个重要的目标,尽管有的问题的求解可以直接借助于工具软件,但是很多问题需要针对问题进行算法设计,如计算机模拟方法。

二、以数学建模活动为平台,培养学生综合创新能力

综合能力不仅包括应用知识的能力,沟通表达能力、协作能力、文献检索和综合信息的能力、中英文写作能力等都是大学生综合素质的重要内涵。数学建模的教学实践活动为在校大学生提供了一个很好的平台,学生不仅扩展了知识面,还在合作学习、沟通表达、文献检索与运用、中英文写作等多个方面得到了提升。

(一)利用文献检索手段,培养大学生快速获取信息的能力

现代社会到处充满信息,如何在海量的信息中快速找到自己所需要的信息,如何合理有效地利用这些信息,并在此基础上进行创新活动,是未来大学生应必备的素质。数学建模的综合题目内容广泛,如电力管理、医学影像再造等。由于涉及自然科学和社会科学、工程实践管理等各个领域,所以在课堂教学中没有足够的时间讲授各方面的背景知识。我们要求学生通过查阅相关文献资料去自学这些知识,有些题目的数据必须让学生自己去查找,如美国竞赛的很多题目都需要在开放的环境下寻找合适的数据进行分析。为此可以选择一些这样的题目,如地球能源问题、全球大气变暖问题等,学生利用网络图书馆和internet查阅和收集各种文献资料,熟悉了查阅文献资料的途径和渠道。教学活动中对文献检索能力的培养不仅使学生知道了如何快速获取信息,而且还为竞赛节省了时间。有效地收集、评价和利用信息是大学生创新能力培养的前提。

(二)倡导合作学习,培养学生团队协作意识和能力

团队合作精神是衡量当今大学生综合素质的重要因素,是团队在竞争中取得成绩的必要条件之一。数学建模竞赛以集体为单位参赛,在培训学生的过程中,尽量实行优势互补,将来自不同学科和专业的学生进行组合,学生在共同讨论的基础上分工协作,其中还要选出一个队员担任组织协调工作。在培训过程中我们发现,如果组内成员能积极表达自己的看法,对问题的分析比较全面和细致,在对问题的求解思路达成一致的情况下再开始工作,那么就可以取得较好的成绩。所以要避免互不沟通、各做各的情况,这会导致重复工作,总体效果还不好。合作学习与协作精神的培养使学生体会到了“1+1>2”的力量。

(三)中英文表达和写作,是培养学生科技文写作能力的重要前提

在数学建立模型竞赛中参赛论文以科技文的形式上报,所以每个队的成员要将合作完成的解题结果写成科技文,美国竞赛还要以英文进行写作。在数学建模的教学活动中,我们发现学生对论文的写作很不重视,他们把大部分的时间放在资料的收集整理、对题目的分析、建模以及设计算法等方面,最后草草地交论文,并没有完整而清晰地解答自己所做的题目。特别是在竞赛期间,时间有限,如果没有训练有素的写作水平,就很难将全队的努力完美呈现出来。针对这些问题,在数学建模的综合训练阶段,我们特别加强了对科技文的中英文写作练习,同时强调学生用图、表、数据等直观感性的形式来表示所做的结果。在这样的训练之后,学生高度重视了论文的写作,为将来从事科研活动奠定了协作的基础。

三、结束语

以结合数学建模教学实践的特点,着力提高学生应用知识的能力和综合创新能力,在教学中取得了良好效果。笔者教过和指导过的不少学生在全国和美国大学生数学建模竞赛中获得了不俗的成绩,他(她)们亲身体会到运用数学思维和方法处理实际问题的优势,进入研究生阶段的一些工科学生也深感参加数学建模实践活动在提高自己综合能力与科研能力方面的巨大作用。数学建模教学活动已成为当代大学生数学教育改革的主要方向之一,数学建模活动的展开为培养学生的综合创新能力开创了一条有效的途径。

[注释]

[1]李尚志.培养学生创新素质的探索[J].大学数学,2003(1):46-50.

[2]钱国英.本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005(9):54-56.

[收稿时间]2014-12-15