首页 > 范文大全 > 计划安排

关于数学建模的认识(6篇)

发布人:收集 发布时间:2024-04-13

关于数学建模的认识篇1

关键词:数学建模大学数学教学教学意识和方法素质教育

新时期的今天,伴随着科技的发展和生活的日益数字化,数学建模意识和方法的应用也日益广泛。当前,根据数学建模应用的作用,并针对大学数学教学中的现存问题,强调数学建模意识和方法的培养对推动大学数学教学的改革和我国素质教育发展意义十分巨大。文章对此展开论述及分析,并提出了一些相应的有效途径及对策。

一、数学建模的实质涵义

数学建模是指建立数学模型的过程。人们通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验等。所以,数学建模整体而言是一个系统而多面的过程,需要多种技能、方法、知识及分析的辅助和运用。

数学建模是一种意识,也是一种方法。它要求运用数学的语言及方法,通过系列活动,形成一种数学手段,解决实际生活和工作中的具体的或者抽象的问题与对象。数学建模理念可以说是巧妙地将数学学科领域与其他学科领域结合起来孕育而生,以适应新时展的需要,也是对素质人才发展方向的适应。

二、大学数学教学存在的问题及培养数学建模意识的必要性

1.大学数学教学存在的问题。

我国数学教学长期的历史传统等因素造成了授课中重理论知识及数学分析方法,轻视了对于实践生活的结合,重视逻辑严密地学术知识的灌输、片面强调分析过程,轻视了学生认知能力和水平的实际限制、结果的精确性等,造成了理论与实践的脱节。同时,在教学中多以教师传授为主,轻视学生学习及认识能力自主性的培养,缺乏对学生良性思维思考能力的引导,对于素质教育的发展及素质人才的培养明显不利。

2.培养数学建模意识的必要性。

培养数学建模意识和方法是大学数学教学改革及素质教育发展的需要。数学建模是指通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验。可见,数学建模的过程是在融入了包括数学在内的多种学科领域的知识信息、方法及技能的过程,是把数学知识技能同应用实践能力相结合的过程,是可以拓展创新思维意识及能力、培养高素质人才的过程。

总之,将数学建模意识和方法融入到大学数学教学中,有利于促进数学与其他相关学科的融会,提高数学在社会领域中的应用价值,实现教学改革和素质教育发展的需求。

三、培养大学数学教学中数学建模意识和方法的途径

1.遵循数学教学及学生的认知规律,循序渐进,树立数学建模理念。

在大学数学教学中,教师要树立数学建模理念,注意将其融入到教学之中。针对目前大学数学教学存在的问题,教学工作应尽量避免晦涩难懂、专业逻辑性极强的理论语言的运用和附加,强化对现实实践问题的解决和联系。尽量通过通俗语言、结合时代现实,循序渐进的演绎分析及引入理论的学习,并渐渐引导学生对数学用语严谨性的认可与学习。如此,才能加强理论与实践、时代的结合,强化数学与其他相关学科领域的联系,激发学生学习的乐趣及对数学融入这个时代现实的认可与理解力。

2.回归自然、强化与生活的联系,激发学生认识、解决实际问题的兴趣。

在大学数学教学中,教师应精而少地选择数学例题,引导学生对数学建模意识的培养,鼓励学生通过数学理论知识认识及解决实际生活问题。同时,我们应较少对理论知识、经典例题、技巧方法的片面倚重,着重强化实际应用及与其他学科领域的联系,拓宽学生的视野,以“授之以渔”的教学方式,提高他们对数学学习的研究乐趣,拓展他们的思维理解和思维方法,激发他们认识与思考世界问题的兴趣及能力。

通过对我国大学数学教学中现存的问题及教学中融入数学建模思维和方式必要性的分析,了解到应时展需要,我们需要将数学建模思维和方式融入到大学数学教学中。相信,如此,有利于促进学生树立正确的认识观与价值观,也必将实现学生知识、能力及素质的全面提升,真正适应新时期大学数学教学改革与素质人才教育的需要。

参考文献:

[1]朱世华,李学全.工科数学教学中数学建模技术的嵌入式教学法[J].数学理论与应用,2008,(4).

关于数学建模的认识篇2

关键词:数学建模;素质教育

素质教育是指依据人的发展和社会发展的实际需要,以全面提高全体学生的基本素质为根本目的,以尊重学生主体性和主动精神,注重开发人的智慧潜能,注重形成人的健全个性为根本特征的教育。

数学建模是指把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。

全国大学生数学建模竞赛组委会主任李大潜院士2002年5月18日在数学建模骨干教师培训班上的讲话中说道:“数学教育本质上是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径。”

李大潜院士的讲话一语道破“天机”,一下子解决了长期以来困扰数学工作者和学习数学者面临的或者无法参悟的问题,有力地指出了数学建模与实施素质教育的关系。李大潜院士提出的关于数学建模与实施素质教育的关系势必为推动素质教育的发展提供了新的动力和方向。

笔者参加工作以来,一直从事数学教学工作。从学习数学到数学教学,特别是经过多年的数学教学工作,也曾遭遇过类似的“尴尬”,多年来始终没有对数学建模与实施素质教育二者之间的关系形成系统的认识。但在学习了李大潜院士的讲话精神后,方才恍然大悟,经过认真整理与分析,结合自己的学习、工作实际,终于对此二者之间的关系有了进一步的认识。实际上,我们的工作,特别是数学教学工作,就是对学生进行严格的数学训练,可以使学生具备一些特有的素质,而这些素质是其他课程的学习和其他方面的实践所无法代替或难以达到的。这些素质初步归纳一下,有以下几个方面:

1.通过数学的训练,可以使学生树立明确的数量观念,“胸中有数”,认真地注意事物的数量方面及其变化规律。

2.提高学生的逻辑思维能力,使他们思路清晰,条理分明,有条不紊地处理头绪纷繁的各项工作。

3.数学上推导要求的每一个正负号、每一个小数点都不能含糊敷衍,有助于培养学生认真细致、一丝不苟的作风和习惯。

4.数学上追求的是最有用(广泛)的结论、最低的条件(代价)以及最简明的证明,可以使学生形成精益求精的风格,凡事力求尽善尽美。

5.通过数学的训练,使学生知道数学概念、方法和理论的产生和发展的渊源和过程,了解和领会由实际需要出发、到建立数学模型、再到解决实际问题的全过程,提高他们运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。

6.通过数学的训练,可以使学生增强拼搏精神和应变能力,能通过不断分析矛盾,从表面上一团乱麻的困难局面中理出头绪,最终解决问题。

7.可以调动学生的探索精神和创造力,使他们更加灵活和主动,在改善所学的数学结论、改进证明的思路和方法、发现不同的数学领域或结论之间的内在联系、拓展数学知识的应用范围以及解决现实问题等方面,逐步显露出自己的聪明才智。

8.使学生具有某种数学上的直觉和想象力,包括几何直观能力,能够根据所面对的问题的本质或特点,八九不离十地估计到可能的结论,为实际的需要提供借鉴。

但是,通过数学训练使学生形成的这些素质,还只是一些固定的、僵化的、概念性的东西,仍然无助于学生对学习数学重要性及数学的重大指导意义的进一步认识,无助于素质教育的进一步实施。

“山重水复疑无路,柳暗花明又一村。”数学建模及数学实验课程的开设,数学建模竞赛活动的开展,通过发挥其独特的作用,无疑可以为实施素质教育作出重要的贡献。正如李大潜院士所说:“数学建模的教学及竞赛是实施素质教育的有效途径。”

第一,从学习数学建模的目的来看,学习数学建模能够使学达到以下几个方面:

1.体会数学的应用价值,培养数学的应用意识;

2.增强数学学习兴趣,学会团结合作,提高分析和解决问题的能力;

3.知道数学知识的发生过程,培养数学创造能力。

第二,从建立数学模型来看,对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。也可以说,数学建模是利用数学语言(符号、式子与图象)

模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。

第三,从数学建模的模型方法来看,有如下几个方面:

1.应用性——学习有了目标;

2.假设——公理定义推理立足点;

3.建立模型——分层推理过程;

4.模型求解——matlab应用公式;

5.模型检验——matlab,数学实验。

第四,从数学建模的过程来看,有如下几个方面:

1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3.模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

4.模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。

5.模型分析:对所得的结果进行数学上的分析。

6.模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

7.模型应用:应用方式因问题的性质和建模的目的而异。

从以上数学建模的重要作用来看,数学建模对于实施素质教育有着重大的指导意义和主要的推动作用。反过来说,素质教育也对数学建模有着必然的依赖性。

第一,要充分体现素质教育的要求,数学的教学还不能和其他科学以及整个外部世界隔离开来,关起门来一个劲地在数学内部的概念、方法和理论中打圈子。这样做,不利于学生了解数学的概念、方法和理论的来龙去脉,不利于启发学生自觉地运用数学工具来解决各种各样的现实问题,不利于提高学生的数学素养。长期以来,数学课程往往自成体系,处于自我封闭状态,而对于学数学的学生开设的物理、力学等课程,虽然十分必要,但效果并不理想,与数学远未有机地结合起来,未能起到相互促进、相得益彰的作用,更谈不上真正做到学用结合。可以说,长期以来一直没有找到一个有效的方式,将数学学习与丰富多彩、生动活泼的现实生活联系起来,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不会应用或无法应用,有些甚至还会觉得毫无用处。直到近年来强调了数学建模的重要性,开设了数学建模乃至数学实验的课程,并举办了数学建模竞赛以后,这方面的情况才开始有了好转,为数学与外部世界的联系在教学过程中打开了一个通道,提供了一种有效的方式,对提高学生的数学素质起了显著的效果。这是数学教学改革的一个成功的尝试,也是对素质教育的一个重要的贡献。

第二,数学科学在本质上是革命的,是不断创新、发展的,是与时俱进的,可是传统的数学教学过程与这种创新、发展的实际进程却不免背道而驰。从一些基本的概念或定义出发,以简练的方式合乎逻辑地推演出所要求的结论,固然可以使学生在较短的时间内按部就班地学到尽可能多的内容,并体会到一种丝丝入扣、天衣无缝的美感;但是,过分强调这一点,就可能使学生误认为数学这样完美无缺、无懈可击是与生俱来、天经地义的,反而使思想处于一种僵化状态,在生动活泼的现实世界面前手足无措、一筹莫展。其实,现在看来美不胜收的一些重要的数学理论和方法,在一开始往往是混乱粗糙、难以理解甚至不可思议的,但由于蕴涵着创造性的思想,却又最富有生命力和发展前途,经过许多乃至几代数学家的努力,有时甚至经过长期的激烈论争,才逐步去粗取精、去伪存真,使局势趋于明朗,最终出现了现在为大家公认、甚至写进教科书里的系统的理论。要培养学生的创新精神,提高学生的数学修养及素质,固然要教授他们以知识,但更要紧的是使他们了解数学的创造过程。这不仅要有机地结合数学内容的讲授,介绍数学的思想方法和发展历史,而且要创造一种环境,使同学身临其境地介入数学的发现或创造过程;否则,培养创新精神,加强素质教育,仍不免是一句空话。在数学教学过程中,要主动采取措施,鼓励并推动学生解决一些理论或实际的问题。这些问题没有现成的答案,没有固定的方法,没有指定的参考书,没有规定的数学工具,甚至也没有成型的数学问题,主要靠学生独立思考、反复钻研并相互切磋,去形成相应的数学问题,进而分析问题的特点,寻求解决问题的方法,得到有关的结论,并判断结论的对错与优劣。总之,让学生亲口尝一尝“梨子”的滋味,亲身去体验一下数学的创造过程,取得在课堂里和书本上无法代替的宝贵经验。毫无疑问,数学模型及数学实验的教学以及数学建模竞赛的开展,在这方面应该是一个有益的尝试和实践。

第三,从应用数学的发展趋势来说,应用数学正迅速地从传统的应用数学进入现代应用数学的阶段。现代应用数学的一个突出的标志是应用范围的空前扩展,从传统的力学、物理等领域扩展到生物、化学、经济、金融、信息、材料、环境、能源等各个学科和种种高科技乃至社会领域。传统应用数学领域的数学模型大都是清楚的,且已经是力学、物理等学科的重要内容,而很多新领域的规律仍不清楚,数学建模面临实质性的困难。因此,数学建模不仅凸现出其重要性,而且已成为现代应用数学的一个重要组成部分。学生接受数学建模的训练,和他们学习数学知识一样,对于今后用数学方法解决种种实际问题,是一个必要的训练和准备,这是他们成为社会需要的优秀人才必不可少的能力和素养。

第四,数学建模竞赛所提倡的团队精神,对于培养学生的合作意识,学会尊重他人,注意学习别人的长处,培养求同存异、取长补短、同舟共济、团结互助等集体主义的优秀品质都起到了不可忽略的作用。

总之,数学建模对于实施素质教育有着不可比拟的巨大推动作用,数学建模与素质教育二者之间存在的这种紧密联系,是靠我们这些从事数学工作者们挖掘的,但是必须更加清醒地认识到,这种联系是需要我们继续去挖掘和发现,需要我们持之以恒地去努力实践,紧密地依托数学建模,大力推进素质教育的实施,为培养新的人才作出持续、不懈的努力。

[参考文献]

关于数学建模的认识篇3

【关键词】数学模型小学模型思想建模

【中图分类号】G623.5【文献标识码】A【文章编号】2095-3089(2014)10-0141-02

《义务教育数学课程标准(2011年版)》中明确将“模型思想”确定为十大核心概念之一,指出:“应当注重发展学生的模型思想。”模型思想是人们体会和理解数学与现实生活联系的重要途径。将现实生活中的具体问题抽象成数学模型,用数学模型来解决现实生活中的问题。相较于其他核心概念而言,模型思想是小学数学教师比较陌生的一个概念,教师必须主动学习新知识,重视模型思想的培养,打造新时期新风象的数学课堂。

一、创设情景,感知建模价值

数学本是源于生活,又应用于生活的一门学科。因此,教师要学会将数学理论知识、方法、规律与现实生活结合起来,将与数学学习有关的素材引入课堂,以情景方式展示给学生看,描述数学问题的背景,激发学生的学习兴趣,创造轻松、活泼的数学课堂氛围。如:在平均数一课的学习中,按照班级位置的安排分成4-5个小组,小组的人数不尽相同,其中第一小组11人,其他小组都是10个人,布置20道题让学生做,5分钟后统计每组学生的总做题道数。结果第一小组做题18道,第二小组15道,后面三个小组都是17道。问:如何判定哪个小组的学生做题速度最快?这个时候,学生会提出疑议:第一小组虽然做题总道数多,但人也多一个,不公平,这个时候,教师就很顺理成章的将学生引入到平均数教学中。在这个例子中,学生结合自己日常生活经验,很快就能从具体的问题中抽象出平均数这个概念,这也就是一次建模的过程。

将数学知识与生活实际、社会热点、自然文化、大众文化等内容结合起来,激发学生的好奇心和兴趣,让学生感受到新奇、跳动、有趣的熟悉,通过恰当的引导激活学生的生活经验和常识,让学生学会用生活经验来感知现实生活中蕴含的数学问题,帮助学生将生活问题抽象成数学问题,感知数学模型的无处不在。

二、构建数学模型,直指问题关键

创设情景将学生带入到数学模型中,鼓励学生开展数学建模活动,而模型思想的培养则是在建模活动中进行的。教师在教学活动中追本溯源,让学生对数学模型有更直观的感知。如:古人在狩猎中要统计数量,于是出现了自然数,自然数就是在古人狩猎中产生的模型。学生在面对具体的数学问题和现实问题时,一旦建构正确的数学模型,那么就表示其抓住了问题的关键和根本,利用数学模型将问题简单化,让学生更容易认识原先的研究对象,帮助学生更好理解数学,潜移默化的培养学生的数学模型思想。

例如:在认识负数时,用温度计让学生找到正负分界点0的位置,标写出正负温度,得出“温度计越往上温度越高,数越大;温度计越往下温度越低,数越小”的结论,将温度计与数轴联系起来,建立数轴模型,引导学生感知正负数的性质和特点,拓展学生对“数”的认识范围。

首先,对数进行分类,巩固学生对正负数的认识。教师在黑板上随意写下若干个正负数,问学生如何对他们进行分类。然后在学生的积极讨论下,从最先的分成正数和负数两大类变成分为正数、负数和0三大类,在讨论中,学生对数的性质和特点的认识也有所加深。

其次,加强沟通,构建数轴模型,教师拿一个温度计横放着,问学生像什么,有的学生说像直尺,上面有刻度和数。然后教师将温度计横移到黑板上,沿着温度计画出一条线,并将温度计上的刻度简单画出来;接着再将温度计竖放着,画一条直线,数轴模型也就构建出来了。

再次,完善认知,拓展思维。引导学生思考,如何将数放到这个数轴模型中呢,从将1、2、3……自然数放到横轴右边,到将0放在横轴与竖轴的交叉处,再到将负数放到横轴左边,以及这些正负数的排列。这样,学生对数的认识也就更加全面而系统,一下子抓住数的核心。

三、有效渗透模型思想,发展学生模型思维

小学数学教学时刻离不开建模,模型思想渗透在我们的生活和学习中,教师要积极带领学生认识模型,构建模型,潜移默化的渗透模型思想,发展模型思维。渗透模型思想的过程中应注意概念的统一,小学中的数学模型是广义上的模型,它将数学上的概念、公式、定律、规律、法则等抽象成数学模型,使得数学教学就是在一个大的模型中进行的。在实际教学中,并不是说要将所有的数学知识都运用模型来教学,那样既不符合实际,也完全没有必要,甚至会适得其反、过犹不及。模型教学不要求教师抛弃传统的数学概念、公式、定律等的固有教学方法,它要求教师将数学知识与现实生活联系起来,适当运用建模思想开展教学活动。

从小学数学知识上来说,其建模的实际问题并不多,教师要学会抓住两条主线:一、利用文字和符号来表示较为复杂的数量关系,比如说,数学中常见的相遇问题,其中包含的“路程和”数学模型鲜明刻画出两个物体相向而行的运动规律,有助于帮助学生更好理解复杂的数量关系。二、用含有字母的式子来表示复杂的规律,如:探索规律,用火柴摆出如图1所示的六边形,要摆出25个六边形需要多少根火柴?191根火柴又能摆放出多少个六边形。用含字母的式子将规律表示出来,然后解答第二个问题。在大家的共同交流和讨论中,学生很快就能写出规律表达式:5n+1。

图1六边形探索案例

结束语

随着模型思想在小学教学中的渗透,小学教师要积极学习建模思想、方法,对小学知识进行汇总分析,挖掘建模重点。重视数学知识与现实生活知识的联系,逐步渗透建模思想,加深学生对数学模型的理解,使其主动运用数学模型来解决数学问题、现实生活问题,体现数学知识的应用价值。

参考文献:

[1]徐友新.合理定位有效渗透――小学数学教学中渗透模型思想的思考[J].河北教育(教学版),2013(10):15-17.

关于数学建模的认识篇4

关键词:认识模型;模型构建;复习效率

平时,我们上复习课时,总是想把课文的知识点归纳的系统点、详细点,但效果总不如人意。分析产生的原因:

一、复习课存在的问题

每到复习课,教师“一支粉笔”、“一份练习”、“一份试卷”夸夸其谈。教师总是过多地考虑“如何给学生吃饱”,很少去想一想学生“消化吸收吗?”。于是课堂上出现教师只顾机械“填”,学生只能机械的“吃”,复习形式单一,没有新的花样,其结果是复习效益和以前并没有多大变化,学生成绩平淡。

针对上述问题,我力求从模型构建方面入手,使复习课始终围绕着模型展开,取得了较好的教学效果。

二、认识模型

(一)模型的含义。

模型是人们为了某种特定目的而对认识对象所做的一种简化的概括性描述,这种描述是定性的或是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达。如用形象化的具体实物或抽象的语言文字、图表、数学公式等对认识对象进行模拟或简化描述的一种方法。

(二)模型的常见种类。

1.物理模型。以实物或图画形式直观地表达认识对象的特征,如真核细胞线粒体和叶绿体立体结构图。

2.概念模型是对认识对象系统的一种简化的定性描述,用于表示系统组成和相互关系。如用生态系统能量流动过程图解来描述生态系统能量流动规律。

3.数学模型是为了某种目的而对现实原型作的抽象、简化的数学结构,它是使用数学符号、数学式子及数量关系对原型作的一种简化而本质的刻画,比如方程、曲线、函数等概念,都是从客观事物的某种数量关系或空间形式中抽象出来的数学模型。如用细胞呼吸释放CO2量与细胞在不同氧浓度下有氧呼吸和无氧呼吸的变化曲线图。

4.模拟模型是用便于控制的一组条件来代表真实事物特征,通过模仿性试验来了解实体的规律。如制作小生态瓶和性状分离比的模拟。

三、运用模型构建提高复习效率

(一)模仿教材建模。

理解考试大纲要求掌握的基础知识是提升应试能力、实现知识迁移的必备条件。我校高三一轮复习辅导书为“导与练”,在每一章节最后都有“网络构建”图,如复习完必修三第四章后,我要求学生对照图想一想:课本知识要点有没有体现出来,对细节处能不能再补充,再丰富些。经过我的分析和引导,学生认为数量变化中的“J”和“S”型增长曲线知识点过于简单,没有把它们间的内在联系和区别体现出来,应该补充“J”和“S”型种群增长曲线和种群增长率曲线图,并把它们各放在一张图上。其次种间关系中只列出竞争、捕食、寄生和互利共生,它们各自的特点和它们间的区别没有体现出来。应该补充它们的数量坐标图和能量坐标图,以及同种生物间的关系。通过对比分析,学生对知识的理解更深一层。

(二)指导学生建模。

在高三进入一轮总复习时,若只引导学生对课本知识点回忆,那是不够的,教师应当在学生掌握基础知识的基础上,指导学生主动建模,使学生系统掌握知识。如在复习必修二“遗传”时,先把一个个知识点给学生复习,由学生对知识点进行归纳,经过师生共同讨论,整理出一个较为简洁的知识结构图:生物遗传依据正交和反交可分为核遗传和质遗传,核遗传依据显父与隐母杂交的结果,分为性染色体遗传和常染色体遗传(分为常显和常隐遗传),性染色体遗传又分为伴X遗传(分为X显和X隐遗传)和伴Y遗传等。

(三)利用专题建模。

在进行二轮专题复习时,教师要想方设法精心设计教学方式,复习时既要考虑到在原有模型的基础上,进一步加深或拓展对重点知识的认识,充分利用相关模型组合构建,讲清知识点的内在联系,将知识点系统化,更要注重利用模型系列组合,训练学生的思维,实现知识的活学活用.从而达到提高学生解题能力。如在复习“细胞增殖”专题时,我运用以下系列模型进行分析。

1.利用细胞分裂各时期模型图和染色体变化模型图。分析有丝分裂和减数分裂过程各时期中染色体的变化规律即减数分裂过程中有同源染色体的联会、四分体、交叉互换,同源染色体的分离、非同源染色体的自由组合等特有特点,而有丝分裂过程至始至终都存在同源染色体。相关内容在辅导书“导与练”中有具体的练习。

2.利用坐标构建曲线模型图。分析减数分裂各个时期中遗传物质的变化规律。要理解各段曲线所表达的含义,造成曲线转折点的原因。如下图8表示哺乳动物的形成过程中一个细胞内(不考虑细胞质)DNA分子数量的变化。下列各项中对本图的解释完全正确的是(A)A.同源染色体的联会发生在c~d的初期,f点细胞中只含有一个染色体组B.e点染色体数目为n,f点染色体数目又出现短时间的加倍C.e点等位基因分离,f点染色体的着丝点分裂D.a~d是间期,df是分裂期,f~g是精细胞变形的阶段

3.利用坐标构建柱形模型图。分析减数分裂过程中不同时期的细胞名称,各种物质的变化规律,再结合减数分裂每个阶段过程的特点进行分析。如下图的横坐标中,C1、C2、C3、C4表示某种哺乳动物(2n)在减数分裂过程中某些时期的细胞。图中a、b、c表示各时期细胞的某种结构或物质在不同时期的连续数量变化,与图中C1、C2、C3、C4相对应的细胞是(B)A.初级精母细胞、次级精母细胞、精细胞、B.精原细胞、初级精母细胞、次级精母细胞、精细胞C.卵原细胞、次级卵母细胞、第一极体、第二极体D.卵原细胞、初级卵母细胞、次级卵母细胞、第一极体。

4.利用构建生物示意模型图。

分析生殖过程中遗传物质的变化规律,先要理解图表示的意思,其次理解减数分裂过程中基因的变化规律。如下图为一高等雄性动物细胞分裂某时期的结构示意图。已知基因A位于①上,基因b位于②上,请判断该动物体产生Ab配子的可能性是(C)

①100%

②50%

③25%

④12.5%A.①

B.①②

C.①②③

D.①②③④

综上所述,理解模型和进行模型建构活动是复习课的一把钥匙,在模型建构活动中,往往需要学生进行归纳和演绎,将复杂的事物

进行简化、抽象出其本质属性,或者需要将头脑中抽象的概念具体化,才可能将模型方法内化为认知图式,获得认知水平上的提升。

因此,在高三总复习时,如果我们能够较好地利用课本上各种模型、参考书和辅导书中相关的模型进行讲解,根据考试大纲要求的重点和难点,有目的的进行相关系列模型构建分析、重新组建模型和相关类型模型的转换等专题训练,我相信学生通过系统的复习,通过模型构建的思维训练,学生运用知识解决实际问题的能力和应试能力一定会得到不断提高。

参考文献:

【1】赵占良,人教版高中生物课标教材中的科学方法体系,《中学生物教学》

【2】《生物学教学》(华东师范大学主编,2009年2月)

【3】《中学生物学》(南京师范大学主编,2009年7月)

关于数学建模的认识篇5

摘要:高等数学是一门逻辑性很强的科学,它在社会发展中的作用极为重要,本文从高等数学教学中应用数学建模的现状、重要性、方法和策略三个方面着手,阐述了高等数学与数学建模结合的重要性。

关键词:高等数学数学建模应用理论实践

作者简介:李创标,男,广西理工职业技术学院保卫处长,高级讲师。

一、高等数学教学中应用数学建模的现状

高等数学是一门与各科学知识密切相关的学科,也是各高职院校几乎所有专业的一门必修理论课程,但是目前许多数学教学仍然侧重于照搬传统教育模式,没有把应用数学建模作为培养数学思想的重要内容。现在,我国的教学大纲已经明确规定:要具备运用所学的知识解决一些简单实际问题,我国教育界也正渐渐认识到:数学建模日益发挥着重要角色,其重要性指的就是能够解决一些与数学相关的实际问题。从整体上来看,高等数学教学中应用数学建模的现状主要表现在以下几个方面:

(一)高等数学教育过于强调理论知识

应试教育的比重仍占我国高等数学教育的大部分,现行的高数教材内容在理论上要求一丝不苟,要求严谨。这种精细的理论学习过程大大增添了学生学习的难度,在思想上让学生产生了厌学情绪,打击了学生学习的兴趣。在课堂上,学生都用书本上抽象的文字和自己的记忆力来接受摆在眼前的数学问题,丢失了“学为所用”的学习要求。

(二)学时少课程多限制了数学建模渗入高等数学教育之中

对于理论知识的过分要求,以及繁琐的内容体系,要求学生在极为有限的时间里学完课本知识。很多学校为了能在有限的时间内完成教学内容,想尽办法精简压缩现行教材,学时少课程多的矛盾,最终影响了教学的质量,妨碍了数学建模渗入高等数学的教育之中。

(三)高等数学与数学建模的结合已成为趋势

从整个国际大领域来看,世界各个国家都要求于各个年级的课程计划里适量地融入数学建模的内容。例如,在英国的国家统一的课程中,把中小学的数学课分为五个大领域,其中使用和应用数学为其中的一大领域。各国对数学建模应用的重视是理论联系实际这一重要思想的体现,我们可以看出,只发展理论教学而不实践的教学是会被逐渐淘汰的。

二、高等数学教学中应用数学建模的重要性

随着计算机的快速发展,计算机影响着人类生活的方方面面,对于计算机的全面应用已经渗透到当今生活的一切领域。然而,大多数需要用计算机来加以解决的问题,首先都必须转化成纯数学的问题,这样就使得当今社会需要数学建模人才。可以说,高等数学和数学建模互为工具,推动着彼此的发展。数学应用领域的不断发展,要求在高等数学中融入实践模块,那就要求在高等数学的教学中渗入数学建模。故而,高校数学系均需要开设数学模型这门课。总的来说,在高等数学中渗入数学建模,其重要性主要体现在以下几个方面:

(一)高等数学教学中应用数学建模对于培养学生能力极为重要

自然科学发展的历史表明,任何一门学科的发展都要经历从定性认识到定量认识的过渡及飞跃。只有当这门学科理论成长到不再需要用实验来检验时,这门学科才算是趋于成熟。在数学教学中中,我们应当教给学生数学科学的研究思维方式,以及怎样运用数学的科学研究工具。高等数学教学中应用数学建模是一种激发学生探索学习的方法,对于培养学生数学应用能力极为重要。

(二)高等数学教学中应用数学建模推动科学的发展

数学研究的对象是现实世界里的数量关系以及空间形式,它的发展是与现实社会人们的生产生活息息相关的。同时,数学扮演着人类认识和改造世界的强力工具,极大地促进了科学技术的发展。随着科学的进步,“数学模型”已频繁地出现于现代人生产及社会中。高等数学教学与数学建模接轨,意味着理论与实践的结合,不断推动科学的发展。

三、高等数学教学中应用数学建模的方法与策略

数学是一门应用的科学,也是一门逻辑性很强的科学,关于高等数学教学中应用数学建模的方法与策略,则需要从它的本质属性着手,从它在各方面的应用以及实践开始入手,充分发挥其逻辑属性,不断地投入实践。如今许多科学知识都开设有实验,而对于数学这门仍需实践的科学,却很少听说有“数学实验”。因此,实践环节在数学教育实践中意义重大。整体上来看,应该注意以下几个方面的内容:

(一)高等数学教学中附加数学建模和数学实验课程

将实际生活中的一些实际现象与数学变量联系起来,并通过数学语言来将之抽象刻画,找出其中近似的量与量之间的关系,并做出必要、恰当、合理的假设,由此将实际问题转化成数学的问题来加以研究。这样可以让学生对眼前所学的数学知识感兴趣,并积极主动地投入实践,以便于人们更深刻地认识所研究的对象

(二)加强从数学公式到实际问题的转化

这点和上面提到的从实际现象到数学模型是相反的过程,它要求我们从理论到实践,亲身去感悟公式的原理,做到这点,便可达到思想的第二次飞跃,也是认识客观事物规律的重中之重。这也是一个创造性的问题,在运用中学生得时时思考,理论是否和客观事实相符合,如果不合,那找出其中的原因,在这个过程中不断提升自己的知识、素养、能力和精神。这是一个不断修正理论的过程,与外部世界保持联系的过程。

(三)充分发挥现代化教育手段的作用,努力尝试不同的教育方法和手段

将数学建模的思想融入高等数学教学中是没有固定方法的。针对不一样的数学知识,其实际数学理论的实际背景不同,所以必须恰当地将数学模型融入数学教学中,并且还应该注意不同的教育方法和手段相结合,如实例研究和模拟训练等。同时尽可能多地用各种方式渗入数学建模的思想,在教学中加强学生的思维训练,让学生积极主动提出问题,学会分析。总之,要在不同的教学方法中取长补短,最终达到高效率教学的目的。

四、总结

高等数学本是一门探索性较强的学科,其本质并不枯燥。在高等数学的教学中渗入数学建模并加以应用,这对于激发学习兴趣、培养学者能力意义重大。因此,二者的相互结合将会高效地推动数学教育向前发展。

参考文献:

[1]杨曙光,李治明.数学建模思想方法融入高等数学教学的思考与实践[J].大学数学,2010(10).

关于数学建模的认识篇6

数学建模是大学数学课程与现实问题的桥梁,本文初步探讨了如何在高等数学课程的教学中,较好地融入数学建模思想的具体方法,培养学生的创新与应用能力。

【关键词】

高等数学;数学建模;教学改革;教学方法

0引言

随着总理的大众创业、万众创新时代的到来,应用型人才的培养的需求愈加突显,社会与各企业对人才的运用知识能力和实践能力提出了新的要求,作为培养职业人才的高职高专类院校,不仅需要培养学生专业方面的理论知识,更需要着力培养较强的实践能力与动手能力,培养其成为适应社会需要的、能够在不同条件下创造性地用所学知识解决实际问题的能力。与此同时,为了实现应用型人才培养的目标,对我们教师也提出了新的要求与挑战。数学建模是大学数学课程与现实问题的桥梁,全国大学生数学建模竞赛是目前国内规模最大,影响力比较大的科技类竞赛,逐步成为在校大学生展现自己创新能力、解决实际问题能力的舞台,通过数学建模竞赛,不仅展示了学生的综合能力和创新能力,同时也提高了教师的教学能力,为高校数学教学改革提供了新的思路与方法。数学建模竞赛的试题案例涉及面广,与现实问题贴切,适合应用型”的要求。将数学建模的思想与方法融入到高等数学课程的教学中去,是高职高专类院校教学改革的一大措施。

1教学过程融入建模思想的具体方法

数学建模是对实际问题进行抽象简化,并构造出数学模型来求解该问题。事实上高等数学与其它学科与专业领域的联系非常密切,利用数学来解决实际问题的思路与方法涉及了很多专业领域。笔者通过多年和数学建模竞赛指导与培训,积累了一定的经验,并认识到建模的本质是数学理论与实际问题相融合的结果。而因为许多的现实问题都牵涉到众多实际因素,因此在建立数学模型时,往往都需要进行适当的模型假设,简化模型来计算。尽管众多建模问题不尽相同,但其内在联系都是把问题中相关变量的关系通过数学方法来抽象出其具体形式。在教学过程融入建模思想可从如下几点着手:

1.1教材的选用应重点突出数学建模方法的应用

在高等数学教学中融入数学建模思想与方法,教材选用至关重要。目前来说高等数学相关教材达到上百种,可是能够体现数学建模思想与方法的高数教材较少,大部分高职高专类院校所选用的教材大多是借鉴或参照综合性大学的本、专科高等数学教材,使得大部分的教学内容都没有体现自己的应用型人才”培养的特色。个人认为,教材应达到理论知识贴近生活且易于理解,所涉及专业方面知识不能过多,把渗透数学建模思想作为首要参考标准,从根源上提高学生利用数学知识来解决现实问题的兴趣,让学生初步认识到数学原来是有用的”。

1.2以应用型例题为突破口,教学中体现建模思想

众所周知,传统的数学课堂讲授方式较为呆板,大多数的数学教师都习惯与把数学看成是一种墨守成规的工具,而往往忽视了大学数学在培养学生的创造力与创新性能力方面的主要作用,教师不注重或不擅于去搜集一些体现学生创新能力培养相关的素材与实例,使得教学与现实严重脱节,学生在课堂学习中失去主动积极性,培养出来的学生也只会考试而不会用理论联系实际来解决问题。数学在我们的生活中无处不在,众多实际问题大多都能在数学的知识点中找到相关联系,多采纳一些与教学内容结合紧密的例题。而一般选取的实例要尽量贴近教材,接近高职高专类层次学生的认知水平与他们的实际生活,培养学生初步的建模能力,比如一次函数模型,指数函数模型等,达到在数学的教学中融入数学建模思想的目的。所以除了选用适用的教材之外,教师平时应注意搜集一些注重学生创新能力培养的素材与实例,提高课堂教学的趣味性与学生学习的主动性。

1.3在相关定义、定理等内容的讲解中渗透数学建模思想

从本质上说,数学来源于现实生活,高等数学教材里的相关定义比如函数极限、导数与微分、无穷级数等都是从现实问题中抽象出来的数学模型。教师在教学过程中,可以通过对原型问题的再现,从学生所熟知的生活实例引入,使其认识到书本中的定义并不是死”的,而是与实际生活密切联系的。在讲授相关概念的时候,可尽量结合实际提供有关于数学建模基本方法方面的丰富而直观的问题背景。例如在讲解数列极限的概念时,可引入刘徽的割圆术、几何图形、坐标系中点的动画演示等较为直观的背景材料,尽可能地使学生直观地理解定义,使其了解现实问题中的规律与数学理论知识的联系,初步学习、掌握数学建模的思想。又比如在讲解定积分的概念时,可把变力作功、曲边梯形的面积、旋转体体积等问题的求解与之相结合,通过微元法”求解这类实际问题,从中抽象出定积分的定义,让学生认识到数学原来还有这么深厚的现实背景,相对于枯燥乏味的纯理论的填鸭式教学来说,这样更能激起学生的学习兴趣,无形中培养他们挖掘生活与理论之联系的建模能力。

1.4可结合高等数学相关知识面向学生开展专题的数学建模活动

目前越来越多的高职高专类院校也开始参与数学建模竞赛活动,与应用型”人才的培养相互映衬。在教学过程中,教师可适当地让学生多参与,培养动手能力,使学生们能够在实践中体验数学的乐趣。改变传统的教学方式,针对所学知识开展专题类建模活动,使他们能够对实际问题中的各因素间的相互关系进行抽象并建立数学模型。例如请学生们以小组为单位,通过利用网络资源或去有关部门查询本市2000年之后的常住居民数,通过所学的数学知识,建立数学模型解决以下问题:①该市的人口年增长率;②通过你所计算出的人口增长率,预测出2017年初该市的人口总数。并以小组专题论文的形式进行探讨交流。这样的活动其实很多,比如等比数列教学中,关于银行贷款利息的计算。可请学生关注利率变化的基础上,考虑如果向银行贷款50万元15年还清的情况下,采用如下两种不同的还款方式:①等额本金法还款;②等额本息还款。利用所学知识,通过建立数学模型解决月还款额问题,并对比两种还款方式不优劣与不同。

2结束语

在数学建模竞赛的推动之下,高等数学的教学改革也有了更快速的发展,把数学建模思想融入到高等数学的教学中,不失为一种推动数学教学改革的一种的有效途径,亦可达到以赛促教之目的,与教学相辅相成,使教学改革得到长足的进展。

作者:刘君单位:广州城建职业学院