首页 > 范文大全 > 计划安排

数学逻辑推理能力的重要性范例(3篇)

发布人:整理 发布时间:2024-06-08

数学逻辑推理能力的重要性范文篇1

关键词:高中数学教学;学生;逻辑思维能力;原因;策略

与语文学科重形象思维、感性思维不同,数学注重理性思维和逻辑思维。高中数学对知识的联想、抽象思维等逻辑推理的要求相对较高,数学教师如何在教学中抓住机遇,运用合理的方法培养学生的逻辑思维能力,是高中数学教学的一个重要目标。当然,在论述逻辑思维能力培养策略之前,还应简要阐释为什么要培养,这是论证不可少的过程,也是缜密逻辑思维的必然要求。

一、高中数学教学培养学生逻辑思维能力原因

(一)逻辑思维能力本身具有重要性

逻辑思维能力是一种用科学的方法,通过观察、对比、剖析、深思、拓展等复杂过程进行正确深入的思考,最终获得理性答案的能力;是我们正确观察认知世界,形成正确的世界观与价值观所必备的;同时,也是在纷繁复杂的诸多事物中,透过现象找出本质不可或缺的一项能力。没有逻辑思维能力,对事物的认知就会停留在感性浅薄的层面,难以用正确的思维去指导促成实践,这对于个人的发展,对一个公司、一个国家和民族的发展来说,都是不利的。因此,作为正值各种能力培养关键期的高中生,关注他们逻辑思维能力的培养,是实施素质教育的必由之路,是培养德、智、体、美、劳全面发展的社会主义接班人的应有之义。

(二)高中数学学科特点决定

正如前述,高中数学是一门注重抽象思维、理性思维和逻辑思维的学科,它与语文、英语等侧重感性思维不同。高中数学学科固然有感性思维的因素,比如对某一个命题的猜想(不计较正确与否),但逻辑思维应该是数学学科更核心和本质的思维模式。正是因为数学具备这样的特点,在学习高中数学时,就要抓住“逻辑思维”这一主要矛盾,对症下药,有意识地去提升逻辑思维能力,为学好高中数学奠定优良的基础。

二、高中数学教学培养学生逻辑思维能力的策略

学生思维能力的培养是一个漫长的过程,不可能一蹴而就。一般探讨逻辑能力的文章,都从逻辑思维的方式、推理基本方法等方面展开,我们探讨高中数学教学培养学生逻辑思维能力,不妨从整个教学过程着手,分阶段与任务去考察探究。通常情况,我们将教学过程粗分为课前预习、课堂教学、课后复习几大阶段。

(一)课前预习:学会思考,理清基础脉络

如果说兴趣是学习之父,那么,思考就是学习之母。要培养学生的逻辑思维能力,应督促学生认真、积极完成课前预习。课前预习的基本任务是理清基本的概念,对课本涉及的数学问题有一个基本了解,但是,要培养高中生逻辑思维能力,不能就此而止步。顾名思义,逻辑思维能力本身蕴含的一个关键词是“思考”,让学生带着问题去审视书本,思考相关命题,才有可能让学生集中注意力,摆脱走马观花式阅读的干扰,进而在层层推理中感受到数学思维的魅力,提起学习数学的兴趣。教师督促学生完成课前预习,让学生带着相关问题思索,实际也是培养学生自主探索能力、推理能力的重要一步。比如,学习《函数》这一章时,教师可以先布置几个思考的问题:什么是函数,函数的定义包含哪几个不可缺少的要素(判断是否为函数的标准,也是函数的基本特点),函数有哪些种类等。让学生带着这些基本的问题去阅读书本,寻求答案,将不懂的地方做好记号,以便上课时有针对性地听讲。课前预习看似与高中数学教学培养学生逻辑思维没有直接的关联,事实并非如此,课前预习是学生自主学习时间,也是课堂顺利进行的重要前提,可以为学生掌握知识,培养逻辑思维能力打好基础。

(二)课堂教学:疏通知识逻辑,深化理解知识链

高中数学教师在课堂上要有意识地培养学生的逻辑思维能力。课堂教学的一个基本任务是引导学生疏通知识,理清主要的知识脉络,但这只是高中数学教学最为基础的要求,教师还应该让学生学会正确的思考,深入理解知识点的核心、知识与知识间的联系,从而建立一个有效的知识网路。比如,在讲解《数列》这一章时,等差、等比数列求和公式的得出就是解决数列问题的两种基本的思路,教师在讲解时要着重让学生掌握求证的过程,总结这样的思维方式可以在哪些情况下适用。高中数学的研习,千万要摆脱死记硬背的传统教学方式,有人会质疑说,要解答高中数学问题,记住一些概念、公式是必不可少的。我们不怀疑记忆的方式有助于我们迅速解答相关数学问题,但这不能成为学生解答问题的依赖。正如学生在遇到等差数列求和忘记了求和公式,如果我们早就用逻辑思维掌握了求和公式导出的来龙去脉,重新推导,求和公式也就出来了。这就是为什么许多擅长逻辑思维的学生平时并没有花大量时间去背公式、记概念,也能考取相对高分的原因。此外,教师还应从不同角度,引领学生以不同的方法解答问题,深化理解。

(三)课后复习:查缺补漏,开阔逻辑视野

课后复习是巩固知识、查缺补漏以及开阔逻辑视野的重要阶段。这个阶段,教师可以布置适量练习让学生巩固知识,可以通过考试的形式检测学生的理解程度,这些形式看似仅巩固了知识点,实际是逻辑思维又一次训练的机会。此外,我们常说,“学好数理化,走遍天下都不怕”,这句话的启示之一,是高中数学的学习与生活实践是密切相关的。事实如此,很多数学问题都可以在现实生活中找到原型,许多现实问题也可以通过建立数学模型得以准确的解答。因此,高中数学老师要鼓励学生观察生活,尝试着将所学与所用结合起来,这既是学以致用的要求,也是高中生逻辑思维能力培养与实践非常关键的一环。逻辑思维能力的学习,要经历由学习到生活,再从生活反思学习的过程。

总之,高中数学教学逻辑思维能力的培养意义深远,教师要利用好教学每一个过程,切实提升学生逻辑思维能力。同时,提倡学以致用,将知识回归到生活应用本身,这是逻辑思维能力得以提升的又一次飞跃。

参考文献

[1]林鹏.高中数学教学中如何培养学生的逻辑思维能力[J].考试周刊,2014(01)

[2]张一.如何在高中数学教学中发展学生思维能力[J].中国科教创新导刊,2013(12)

数学逻辑推理能力的重要性范文

【关键词】初中数学;逻辑推理能力;数学教学;教育形式;教育理念

引言

在初中数学的教育中,在教师的指导下进行数学学习已经是传统教育理念的一种必要的模式,但是,我们根据传统的教育形式的研究发现,针对学生们的学习状况,教师很难让学生们提升起学习的兴趣,在学习中也很难将学习的形式和学习的理念进行相应的提升,学生们在数学课堂中,主体性的地位得不到真正的体现,很容易产生消极懈怠的情绪,也不能将学生们的学习和核心素养进行进一步的发展。因此,教师在本文中就要不断的研究培养学生们逻辑推理能力的形成,帮助初中的学生们能在充满兴趣的数学课堂内探索数学的知识,并且能更好的促进学生们的创新思维和创造能力的发展,最终提升学生们的数学学习能力。

1.培养学生数学逻辑推理能力的意义

1.1提升学生们的数学核心素养的形成

在现阶段的教育环节中,要想更好地培养学生们的学习兴趣,在学生们的中间产生相应的影响,就要不断的将初中学生们的数学推理能力提升上来,更好的发挥学生们的实力,展示学生们的学习素养,促进学生们在学习过程中的提升和能力的开发。数学本身就是一门比较具有逻辑性和逻辑思维能力的学科,在数学复杂的知识的背后,逻辑推理能力显得尤为重要,是学生们核心素养展示的形式之一,也是学生们在学习的过程中,不断的传授数学的知识基础,促进数学能力的一个关键阶段,因此,培养初中生的数学逻辑推理能力,能更好的帮助学生们将学生们的数学抽象、逻辑推理、数学建模等数学核心素养培养起来,给学生们指引道路,在学生们的发展过程中,能更好的指引学生们在知识和技能的层面上,有一定的观察实践过程,促进学生们更好的将核心素养展示出来。

1.2展示学生们的学习积极性和主动性

在现阶段的初中数学课堂中,进行相应的数学体验,教师要不断的形成良好的教育形式,才能帮助学生们积极主动的参与到初中的数学课堂中来。如果能在初中的数学课堂中,进一步展示数学的逻辑推理能力,能更好的帮助教师们形成良好的核心价值能力,促进学生们的能力探究,帮助学生们形成探究的积极性和主动性,在积极地环节内进行相应的研究,促进学生们能主动的融入到初中的数学课堂中来,帮助初中的学生能更好的获得数学课堂的主动探究能力,促进初中生在良好的学习过程中,能面对数学教育的知识,展示出自身的逻辑能力,帮助数学展示获得良好的推理体验。

1.3能帮助数学课堂形成良好的氛围

在现阶段的数学教育课堂中,教师要想更好地帮助学生们通过逻辑推理能力的提升,展示学生们的主动性,教师自身就要不断地掌握更多的逻辑推理的方式,帮助学生们也能熟练地掌握数学中的逻辑推理方式,通过挖掘教材内部的形成,更好的促进融合,发展教材的特点,掌握教材的元素,更好的将数学课堂的浓厚氛围展示出来。利用当前的教育形式,一定要不断的将学生们的学习活力展示出来,做到学习氛围的形成,将数学课堂变成学生们逻辑推理大展台的过程,更好的活跃教师的教学氛围,将数学课堂变成生机勃勃,并且具有活力的课堂,帮助初中的学生能在数学课堂中获得更多的知识体验,促进学生们能更好的发展和进步。

1.4能更好的提升学生们的思维能力,促进其创新能力的开发

在现阶段的教学中,我们会发展,学生们学习能力的提升和学生们思维的展示和进步密切相关的,在传统的教育模式中,教师不能更好的帮助学生们形成良好的学习体验,学生们往往是跟着教师的步骤进行按部就班的学习,在思维活力的展示和动态的形成方面不能更好的进行相应的把握。但是,在现阶段的教学中,教师将学生们的逻辑推理能力在教学中逐渐的展示出来,能更好的帮助学生们形成良好的思维能力,促进学生们创新创造能力的展示,将学生们的创新创造能力更好的融合在当前的教育中,最终发展学生们的创新思维,落实学生们的学习动力,形成学生们的学习能力的开发和体验。

2.初中数学教学中学生逻辑推理能力的培养措施

2.1加深学生对基本概念的理解

初中数学在教学的环节中,针对每一章节的内容都有着不同的概念,在數学教学的环节中,也注重对数学概念的形成以及对数学概念形式上的学习,只有让学生们学会理解概念,掌握概念的相关内容,才能更好的帮助学生们理解数学背后的知识,才能将数学的知识的逻辑性和数学中所需要掌握的规律,更好的牢记心中,帮助学生们形成良好的逻辑推理能力,促进学生们在逻辑推理能力展示的过程中,更好的形成良好的学习依据,在学习中帮助学生们更好的体验逻辑顺序感,促进学生们能在理解深入的基础上,更好的准确分析相应的内容,促进学生们获得相应的知识体验。

例如,在人教版初中数学七年级下册第五章《相交线与平行线》这部分的内容学习中,涉及到的概念就比较多,在概念的驱使中,需要学生们理解的内容也是比较多的,要想更好的帮助学生们形成良好的学习态势,在学习中更好的形成良好的学习动力,并且在今后的学习之中能建立相应的逻辑推理能力,将相关的概念和内容进行相应的理解,教师首先就要将课本上所需要理解的概念进行汇总。比如,在“相交线”的概念中,其中有相交线、垂线、及其产生的同位角、内错角、同旁内角等,这些概念都是相互关联的,学生们能通过对概念的解读和推理,更好的判定什么是平行线,相交线和平行线是相对的概念,因此,教师要在基础的概念上下功夫,让学生们进行钻研,更好的利用线和角的关系,把握数学的知识,掌握推理的形式,促进数学知识能循序渐进的消化和进步。在此基础上,学生们根据学习的内容,能更好的形成良好的学习优势,并且在概念的分析上能有自己的逻辑性,在今后的数学教学中,教师能讲解一部分的概念,剩下的让学生们融会贯通的学习,帮助学生们形成良好的认知能力,促进学生们能更好的发展自己的技能,帮助学生们能更上一层楼。

2.2运用趣味性逻辑推理激发学生兴趣

学生们的学习兴趣在数学的学习过程中是非常关键的,能帮助学生们形成良好的认知态度,并且将丰富的课堂形式和课堂展示能力更好的利用教学的氛围展示出来,促进学生们的情感体验,展示学生们的学习兴趣,这是培养学生们逻辑推理能力的关键步骤。学生们一旦发现在数学课堂中的乐趣,就能深入的体会和研究,发现其中的乐趣,并且能更加深入的发挥数学的知识内涵,将数学的逻辑推理性更好的展示在当前的数学课堂中,发挥数学课堂的事例,展示逻辑推理的魅力,更好的发展学生们的探求欲望。

例如,在人教版八年級上册第十三章中“等腰三角形”这部分的教学中,教师能以趣味动手性的题目向学生们进行展示,促进学生们能产生学习的兴趣,教师可以给学生准备若干个如图所示的三角形,让学生们进行思考,如何只剪一刀就能把一个三角形纸片变成两个等腰三角形呢?教师一定要鼓励学生们动手剪一剪,试一试,让学生们探求成功的方式和剪法,然后把成功的剪法画下来,呈现在作业本上。

在此之后,教师能让学生们再剪出一些任意三角形,只剪一刀便将其分成两个等腰三角形,并且总结怎样的三角形剪一刀一定可以把其分成两个等腰三角形,让学生们自主的总结规律,这样不仅能将学生们推理的能力展示出来,还能通过动手能力的开发,帮助学生们建立学习数学的恶性去,并且展示学生们的逻辑探究能力。学生们最后能通过自己的逻辑推理,总结出三角形中只要有一个角是另一个的两倍或是三倍,就可以将它分成两个等腰三角形这样的规律,但是在此期间,也会有的学生会根据自己的经验提出疑问,我们要鼓励学生们提出疑问的过程,因为学生们只有能有问题,才能更好的通过自己的思考去解决问题。有的学生们会说一个三角形的三个内角分别为50°、100°、30°,这个三角形也满足一个角100°是另一个角50°的两倍,但是,它不能一刀剪得到两个等腰三角形。学生们会根据这个特殊的例子进行思考并且讨论,最终明白,如果一个角是另一角的两倍时,这个角不能是钝角,这个过程中,学生的数学逻辑推理素养不断的提高。

2.3开展逻辑推理专项训练

逻辑推理能力作为初中学生数学重要核心素养之一,对学生的提升很大,但其逻辑推理能力的提高需要长时间的练习及题感的累计,因此,初中的数学教师应开展逻辑推理的专项训练,使学生在解题过程中逐渐熟悉逻辑推理的运用。初中的数学教师应结合学生具体学习状况,精心设计一些题目或是一些题组,将其组织整合并争取一个月抽出一、两节课的时间进行训练。在训练结束后,要让学生提出问题并通过合作交流一起解决问题,进一步让学生的数学逻辑推理能力得到锻炼和提升,最终发展学生们的数学逻辑推理素养。

2.4开展各类数学活动渗透数学逻辑推理

数学的知识比较复杂,因此,学生们在进行学习的过程中,以及提升学生们的逻辑推理能力的过程中,教师能渗透不同的活动,帮助学生们积累学习的经验,掌握学习的方式。同时,在开展数学活动的过程中,要不断地让学生们进行交流和互动,让初中的学生们学生在相互交流的过程中能获取他人对逻辑推理的心得与体会,有利于自身经验的积累。

2.5创设教学情境,进行合乎情理的逻辑推理教学

情境教学的魅力是我们不容忽视的,在情境教学的基础上,教师要想更好的实现教育的目标,展示教育的活力,促进教育形式的发展,就要将新型的情景教学的形式更好的融合在当前的数学教学中,帮助学生们在合乎情理的情境推断中,促进学生们推理学习的形成,帮助学生们形成良好的学习体验,展示良好的学习节奏,借助一些道具或者是情境的手段,让学生们更好的融入到教学的情境中,营造一个良好的、轻松的学习氛围,在学习中更快的进入到当前的状态中,能真是的理解情境教学的形态,促进学生们对数学展示进行生动的转化,帮助初中的学生能在枯燥的数学课堂中寻找乐趣,并且能引导初中的学生们结合具体的情境展开学习的体验,通过合乎情理的教学形式和手段,锻炼学生的逻辑推理能力和逻辑的感知能力,促进学生们的发展。

例如,初中的数学教师可以在比较抽象的题目中创设问题的情境,让学生们通过问题情境的融入,更好的获得知识的体验,在知识的感知力度和知识的感知能力方面具有更大的发展。若,,且a+b-c=30,求a的值。这道题目学生们看到以后一定是非常迷茫的,没有思路,也没有想法,很多学生看到这类问题便犯愁,不知道问题的切入点在哪里,也不知道问题该从哪里开始入手。此时,教师应引导学生观察等式,让学生们根据等式的形式和内容进行分析,通过分析a,b,c有什么联系,让学生们自主的思考并且自主的推理,有的学生会想到:令=k,则可得a=7k,b=5k,c=2k。所以会出现下面的等式,a+b-c=7k+5k-2k=10k=30,k=3。又因为a=7k,所以a=21。在初中数学教师的引导下,学生在观察代数式的过程中,能逐渐的发现其中的等量关系,并利用一个字母表示,从而找到解决这一问题的关键。这是学生们逻辑推理能力形成和塑造的过程,也是在学生们的发展过程中更好的培养学生们的逻辑推理能力的形式和展现,能不断的促进学生们的发展。在解题的整个过程之中,能更好的提升学生们的观察能力和题目的解毒能力,将推理的合理性通过学生们的自助验证得出,帮助学生们有效的培养自身的逻辑能力。

2.6在运用知识的过程中,培养学生的逻辑推理能力

在初中数学的教学中,知识的运用能力是非常重要的,能更好的帮助学生们将数学知识和技能通过数学实践的形式更好的展示出来,并且能在数学解题以及今后的数学生活中,建立良好的数学应用能力,促进学生们逻辑推理能力的形成,将学生们的思维规律和思维的敏捷度更好的建立起来,更好的将数学的知识通过学生们的大脑展示出来,培养学生的逻辑推理能力。

例如,在人教版初中数学九年级下册第二十九章《投影与视图》这部分的教学中,针对投影的形式和三视图的直观概念,学生们在没有学习以前对概念以及内容都是比较陌生的,这时,教师能采用多媒体的形式,将不同物体不同方位的投影和三视图展示给学生们,让学生们能从其中找到相应的规律,并且在规律的体验中,更好的形成相应的内容,促进学生们的知识内化于心的过程,接下来,学生们就要针对这种空间的想象能力进行相应的逻辑推理,更好的将学生们的学习过程变成由特殊到一般的思维过程,加深初中学生对知识的理解,同时,也培养出初中学生的逻辑推理能力,更好的发展初中学生们的实力。

数学逻辑推理能力的重要性范文

[关键词]人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题:

·效率和资源有限的推理;

·感知;

·做计划和计划再认;

·关于他人的知识和信念的推理;

·各认知主体之间相互的知识;

·自然语言理解;

·知识表示;

·常识的精确处理;

·对不确定性的处理,容错推理;

·关于时间和因果性的推理;

·解释或说明;

·对归纳概括以及概念的学习。[①]

21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。

我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。

1.常识推理中的某些弗协调、非单调和容错性因素

AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②]

“次协调逻辑”(ParaconsistentLogic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。

在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:

?(Aù?A)

Aù?AB

A(?AB)

(A??A)B

(A??A)?B

A??A

(?Aù(AúB))B

(AB)(?B?A)

若以C0为经典逻辑,则系列C0,C1,C2,…Cn,…Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]

非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。

2.归纳以及其他不确定性推理

人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。

首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④]有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤]这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。

再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。

3.广义内涵逻辑

经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能”、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。

大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的:

晨星必然是晨星,

晨星就是暮星,

所以,晨星必然是暮星。

这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。

一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义如下:一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如€,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥]

在各种内涵逻辑中,认识论逻辑(epistemiclogic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要著作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。

4.对自然语言的逻辑研究

对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。

自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。超级秘书网

美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则:

(1)数量准则:在交际过程中给出的信息量要适中。

a.给出所要求的信息量;

b.给出的信息量不要多于所要求的信息量。

(2)质量准则:力求讲真话。

a.不说你认为假的东西,。

b.不说你缺少适当证据的东西。

(3)关联准则:说话要与已定的交际目的相关联。

(4)方式准则:说话要意思明确,表达清晰。

a.避免晦涩生僻的表达方式;

b.避免有歧义的表达方式;

c.说话要简洁;

d.说话要有顺序性。[⑧]

后来对这些原则提出了不和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是:

(i)S说了p;

(ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则;

(iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q;

(iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q;

(v)S无法阻止听话人H考虑q;

(vi)因此,S意图让H考虑q,并在说p时意味着q。

试举二例:

(1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。”