[关键词]:电厂继电保护应用策略
一、引言
发电厂是我国生产电能的主要基地,继电保护设备是发电厂内部电力系统运行必不可少的装置,它能够及时检测到系统运行的突发故障或异常运行方式,既可在短时间内发出报警信号,也能直接对故障部分采取切断、隔离处理,为发电厂电气设备的运行提供了安全、稳定的环境。根据发电厂设备运行记录分析,继电保护装置会受到多种内外因素的干扰,造成其保护功能明显降低。因此,及时采取有效策略抵制干扰是发电厂继电保护需要尽快处理的问题。
二、发电厂继电保护的作用与要求
发电厂继电保护的主要功能是对异常状况及时检测报警,对可能发生的故障提前采取应急处理措施。发电厂内部电力系统的继电保护装置具有很强的故障判断力。当系统在运行期间产生异常之后,可利用继电保护装置尽快切断故障源,避免造成设备损坏或系统运行中断。发电厂采用继电保护之后应详细分析其功能作用及运行条件,实现最大的设备保护效果。
2.1继电保护的作用与组成
电力是国民经济健康平稳运转的重要能源之一。目前,我国的发电厂生产电能的方式主要是火力发电、水力发电等。每一种电能生产模式都要使用各种自动化电气设备。将继电保护装置应用于电气设备发挥监测故障的作用,如:继电保护在发电厂设备故障发生前能感应到异常信号,从而立刻把故障元件与电力系统隔离,防止设备内部构件受到损坏。同时,继电保护的紧急处理也防止停电时间过久带来的不便,让发电厂设备保持正常的运行状态。
继电保护动作的实现要借助于整套装置功能的发挥,其通常由测量元件、逻辑元件、执行元件等结构组合而成,每一个部分都是影响继电保护功能的重要因素。具体情况:测量元件,通过对发电厂电气设备的元件参数综合测量,将所得参数与标准值对比后判断设备的实际状态,以命令继电保护装置是否动作;逻辑元件,根据相对应的逻辑关系对设备故障详细分析,确定具体的类型、范围,再确定断路器跳闸、传输信号等动作;执行元件,继电保护信号传输完成后,执行元件则按照信号执行命令.如:跳闸、切断等。
2.2继电保护的基本要求
鉴于继电保护对发电设备故障的检测、报警、切断、隔离等多项功能,发电厂在配置继电保护装置时必须要考虑到继电保护动作运行的基本要求。只有满足继电保护装置运行的条件,才能使其保护功能得到正常发挥。一般情况下,继电保护的基本要求应当符合选择性、灵敏性、快速性等方面的要求。具体如下:
(1)选择性
继电保护动作的选择性是指保护动作装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
(2)灵敏性
灵敏性是衡量继电保护装置反应能力的指标,发电厂设备出现短路故障之后,保护装置动作时间越短则灵敏性越强。作为继电保护的基本要求,装置的灵敏性必须能在规定时间内判断故障的位置、种类、影响及处理方法,让继电保护装置能正确反应动作。如:发电厂系统最大运行方式下三相短路动作正常,同时在系统最小运行方式下两相或单相短路故障时同样动作正常。
(3)快速性
快速的切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。因此,在故障发生时,应力求保护装置能迅速动作切除故障。
(4)可靠性
保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不该动作的情况下,则不应该误动作。
三、继电保护的干扰因素
继电保护在发电厂生产期间起到了关键性的保护作用,既能对设备异常状态有效检测,也可在故障发生时紧急切断处理。但从实际保护状态分析。发电厂继电保护受到了多方因素的干扰,造成继电保护装置的性能减弱,这对于发电厂安全稳定运行是不利的。
3.1雷击因素
雷电对发电厂设备的破坏力较大,且自然雷击形式多样,如:直击雷、感应雷、球形雷等。若发电厂的接地元件、避雷器受到雷电袭击后,因电厂内的地网为高阻抗,使得雷击造成的高频电流在变电站的地网系统中造成暂态电位的升高。这种高阻抗干扰状态下,发电厂继电保护装置的误动作率明显上升,保护装置的灵敏性、可靠性等性能大大减弱。
3.2高频因素
发电厂设备内隔离开关动作时间过长、动作速度过慢,在隔离开关触点之间则形成“电弧闪络”,由此形成过电压、高频电流等。这种高频状态会使得母线附近形成强烈的电场、磁场,使得二次回路、二次设备的运行发生异常状况,若干扰强度大于装置逻辑元件承受范围时便会使继电保护装置动作异常,干扰了发电厂继电保护装置的运行。
3.3辐射因素
为了满足电能生产调控的需要,发电厂内部电力系统也配备了相应的移动通信设备。通信设备在使用期间会形成强辐射电场、磁场。通信设备引起的辐射也会对继电保护造成一定的干扰,如:变化的磁场耦合到附近的弱电子设备的回路中,而回路则感应出高频电压而产生假信号源,这往往会误导继电保护装置的正常动作,影响了设备保护的效果。
四、发电厂继电保护的有效策略
继电保护是维持发电厂正常生产重要的关键环节,维持继电保护装置正常可靠动作是工程设计人员及运行人员需要深入分析的内容。考虑到继电保护干扰因素带来的不利影响,发电厂在生产运行期间要重视继电保护装置的管理,对潜在的干扰因素及时防范处理。根据笔者的工作经验,发电厂继电保护抵抗干扰的措施包括以下几个方面。
4.1安排保护人员
发电厂应安排专业人员对继电保护装置监测观察,当装置发生异常状态后及时采取措施处理。通常对发电厂继电保护装置要充分安排继保、运行等人员的工作,让发电厂继电保护装置保持良好的运行,专业人员必须经过专业的培训和学习,经过专业机构的测评,并对相关设备的运行状态建立运行数据,以作为资料储备。
4.2完善规章制度
不同发电厂的生产模式各不一样,发电厂要根据自身采用的继电保护装置特性,制定完善的规章制度加强管理。如:继电保护设备台账、运行维护、事故分析、定期校验、缺陷处理等。
4.3实行状态监测
随着微机保护和微机自动装置的自诊断技术的发展,变电站继电保护故障诊断系统的完善为电气二次设备的状态监测奠定了技术基础。对保护装置可通过加载在线监测程序,对相应的干扰因素及时处理。
4.4配电线路保护
当前,国内配网线路均以lOkv电压等级为主,但是10kV配电线路结构特点是一致性差。这就要求技术人员参照电网保护配置情况及运行经验,利用规范的保护整定计算方法对继电保护参数准确计算。
4.5智能网络控制
科学技术的发展促进了人工智能技术在电力系统中的广泛运用,如:神经网络、遗传算法、进化规划、模糊逻辑等。发电厂可以利用计算机网络平台,创建智能化的网络控制系统,引导继电保护装置正常的动作秩序。
希望给予同行带来一定的参考价值。
关键词:电力系统继电保护技术与应用
中图分类号:TM7文献标识码:A文章编号:
前言
当今,电力已作为现代社会的主要能源,与国民经济建设和人民生活有着极为密切的关系,然而供电不稳定,特别是大面积停电事故所造成的经济损失和社会影响是十分严重的。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。
1继电保护发展现状
上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
2继电保护的基本原理
继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
3电力系统中继电保护的配置与应用
3.1继电保护装置的任务
继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。
3.2继电保护装置的基本要求
(1)选择性
当供电系统中发生故障时,应断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。
(2)灵敏性
保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
(3)速动性
保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。
(4)可靠性
保护装置不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性
3.3保护装置的应用
继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。
另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。
4变电站微机保护配置的应用实例
2006年,某公司成功将一个传统电磁式继电器保护的35kV变电所改造成微机保护装置系统的终端变电站。
(1)系统保护装置及监控系统
①系统保护装置。线路保护装置、主变保护装置——可完成变压器的主、后备保护、综合保护装置、线路保护装置、电容器保护装置、备用电源自投装置、小电流接地检测装置、综合数据采集装置。
②监控系统的基本功能——数据采集、控制操作、画面制作、监视显示、事故处理、制表与打印。
(2)系统设计时的注意问题
①由于控制和保护单元都是采用微机装置,故一些必要的开关量和模拟量应从开关柜或户外设备引至微机采集、保护屏。根据控制和保护要求的不同,输入的量也不同。
②开关柜与微机装置之间的端子接线较简单,大量的二次接线在微机采集控制单元和保护单元内部端子连接。传统的继电保护整定计算结果不能直接输入到计算机,须转换为计算机整定值。
(3)应用效果
①该变电所投产运行后,除开始操作人员对微机系统不熟悉原因,使用过控制保护单元的紧急手动按钮外,基本上都在微机装置和监控计算机上操作,整个系统运行良好。
②线路及站内设备的继电保护均采用计算机采集、运算、判断,反应灵敏、迅速,在设备或线路有故障时可靠切除故障点。
③各种设备微机保护的配置齐全完善,能完美解决继电保护短线路及运行方式变化大时的各级保护的配合问题,因此该站正常运行后可靠性比原来显著提高,基本杜绝了越级跳闸的发生。
5继电保护装置的发展,局限性及其现阶段的应用范围
继电保护原理的发展是从简单的电流保护逐步向复杂的距离保护和高频保护过度的。继电保护装置的发展则依赖于构成继电保护装置元器件技术的发展。其发展大致经历了四个阶段,即从电磁型、晶体管型、集成电路型到微机型保护的发展历程。传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。
继电保护系统在电力系统中起着开关或警报的作用,我们可以将该原理称为开关原理。现阶段,我们习惯性的将继电保护系统认定为高压、低压的电力输电系统的保护系统。然而,继电保护的这一开关原理已经广泛应用于大部分的电路、电器、电子等高压、低压、强电、弱电等技术领域。因为每个继电保护系统所要保护的对象不同,所以需要采用的保护装置也要相应的加以选择,以达到功能与成本的匹配。
6小结
除上述几点外,要保证继电保护专业的安全运行,还有很多基础的工作要做,必须在继电保护的现场运行,维护,校验,规程编制上狠下工夫,才能有效地保证继电保护和安全自动装置的正确动作,提高其正确动作率。
参考文献
[关键词]断路器跳闸重合闸线路保护装置操作继电器装置
0、引言
操作继电器装置是保护装置与断路器之间的接口装置,又是手动操作断路器的执行装置,其性能和可靠性直接影响保护装置动作及手动操作的可靠性。与微机线路配套的操作继电器装置,功能多,回路复杂,对其性能和可靠性的要求更高。
目前国内生产的与微机线路保护配套的操作继电器装置均采用“集中配置方式”。而双重化的两套主保护及后备保护都要通过共用的一套操作继电器装置进行跳闸及重合闸。这样一来操作继电器装置就成了微机保护的“卡脖子”装置,降低了各保护装置的独立性,也给停运调试保护带来不便。另外,手动操作回路、断路器的位置继电器、操作闭锁回路以及交流电压切换回路等,都集中在一套操作继电器装置中,回路复杂,而且使用灵活性差。为了改进操作继电器装置的性能,避免上述缺点,因而提出了新型的“分类操作继电器装置”的设计方案。
1、新型分类操作继电器装置的插件配置原则
为了能构成针对操作对象的各种不同类型的操作继电器装置,如“保护操作继电器装置”、“断路器操作继电器装置”和“综合型操作继电器装置”等,以供选用。新型分类操作继电器装置按与保护或与断路器配套配置插件。在各种操作继电器装置中,再按功能配置插件。这样,可提高操作继电器装置的灵活性和独立性。
2、新型分类操作继电器装置插件的具体配置
(1)按保护配置的插件有:
①重合及第1组跳闸线圈操作插件;
②第2组跳闸线圈操作插件(单跳闸线圈的断路器无此插件);
③保护三相操作插件。
(2)按断路器配置的插件
①断路器闭锁回路操作插件;
②手合断路器操作插件;
③手跳断路器操作插件;
④断路器跳位及第1组合位继电器插件;
⑤断路器第2组合位继电器插件(单跳闸线圈的断路器无此插件)。
(3)交流电压切换插件
3、可构成不同类型的操作继电器装置
(1)保护操作继电器装置
由2、(1)条中的三种插件组成。可根据用户需要,每套主保护配置一套保护操作继电器装置,以增强主保护的独立性。
(2)断路器操作继电器装置
由2、(2)条中的五种插件组成。每台断路器可配一套。
(3)交流电压切换插件
只有双母线才装设此插件。
(4)将2、(1);2、(2)和2、(3)各条中的插件全部组合,就可构成综合型操作继电器装置。此类装置可用于线路断路器为单跳闸线圈或双跳闸线圈的分相操作继电器装置。
4、新型分类操作继电器装置的特点
(1)保护操作断路器的出口回路与手动操作断路器的回路完全独立,且分别装在不同的装置中或不同的插件中,大大提高了各套装置的可靠性。
(2)简化了各种插件中回路和元器件的结线
由于新型分类操作继电器装置是按对象和功能配置插件的,因此,大部份插件中的回路和元器件结线简单。重合闸及跳闸插件中的回路和元器件虽然较多,但大都为相同结线,接线单一,也便于装配及调试。
(3)减少了各种操作继电器装置中的插件数量
在新型分类操作继电器装置中,将一个操作对象的同类功能回路放在一个插件内,可减少整套装置的插件数量。如对于双跳闸线圈的分相操作的线路断路器,原操作继电器装置须14个插件,而新型分相操作继电器装置只需9个插件。对于单跳闸线圈的分相操作的线路断路器,原操作继电器装置须11个插件,而新型分相操作继电器装置只需7个插件。
(4)可简化各插件之间的背板结线,减少工作量,提高装置的可靠性
在新型分类操作继电器装置中,将分相操作断路器三个相的跳闸回路和合闸回路集中在一个插件内,另外还将三相的跳位继电器及合位继电器集中在一个插件内。而在以往的操作继电器装置中,这些回路和继电器是分散在6个插件中,相互联线是用装置的背板线联接的,不但费时费材料,而且易出错。在新型分类操作继电器装置中,上述回路和继电器之间的联线,用印制板的线联接,因而能大大节省工作量、材料和装置的空间,同时提高了装置的可靠性。
(5)新型分类操作继电器装置在一个半接线的线路上配置更合理
在一个半主接线的线路上,配置保护操作继电器装置与保护配套。断路器上配置断路器操作继电器装置。此方案比以往按断路器配置综合型操作继电器装置的联线能减少很多,特别是对于线-线串的线路,线路保护的分相跳闸出口回路不必经断路器的操作继电器装置转接,提高了保护出口跳闸的的独立性,也增加了其可靠性,同时断路器的操作继电器装置的跳闸回路也简化了。
(6)在新型分类操作继电器装置中,由于手跳断路器的出口回路与保护的跳闸出口回路分开,因此,当手动跳闸时,不必采取闭锁保护跳闸信号发光二极管的措施。
(7)新型分类操作继电器装置中,因为保护合、跳断路器的回路与手动合、跳断路器的回路分开独立,所以这两种回路中都要分别装设防跳回路,虽然元器件增加了,但增加不多,且能提高整套装置的独立性和可靠性。
5、分类操作继电器装置与保护配合的原则
(1)保护操作继电器装置与保护配合的原则
每套微机保护装置中,都包括了完整的主保护、完整的后备保护和自动重合闸;保护起动重合闸回路;非全相及三相位置不一致判别以及是否重合在永久故障上等功能,都能在保护装置内完成,不必由保护操作继电器装置提供相应接点。它只须完成保护装置的跳闸、重合闸和防跳功能,因此它的构成很简单。
(2)断路器操作继电器装置与保护配合的原则
本装置须向各套保护装置送的接点为:手合和手跳接点;有关断路器异常的闭锁接点;断路器三合或三跳后的位置接点;手合断路器后磁保持的合后接点。由于超高压线路一般配置双重化主保护,还有后备保护和辅助保护,因此,本装置应送出数量足够的接点。另外,还须有备用接点,以便灵活使用。6、断路器操作继电器装置的闭锁回路
为了适应气、液压及弹簧等操作机构的断路器,断路器操作继电器装置中设有:闭锁重合闸、闭锁合闸、闭锁跳闸和闭锁操作四级闭锁回路。当某一级闭锁条件出现后,除了该级闭锁回路起动外,同时还要起动前几级的闭锁回路,以增加闭锁功能的可靠性。为了能使闭锁功能有更强的针对性,各级闭锁接点直接串接在相应被闭锁的回路中。
7、保护操作继电器装置的三相操作回路
(1)各套保护装置的重合闸出口接点接到本装置的ch端子,起动重合闸重动继电器(1,2)chj,对断路器进行三相重合闸,装置面板上重合闸黄色发光二极管亮,同时发重合闸动作信号。
(2)各套保护装置的三跳后允许重合闸的出口接点,接到本装置的q1或q2端子;三跳后不允许重合闸的出口接点,接到本装置的r1或r2端子,进行三相跳闸。三跳插件是按双跳闸线圈断路器配置的。当用于单跳闸线圈的断路器时,送至第2组跳闸线圈的回路可取消。
8、断路器操作继电器装置的三相操作回路
(2)当就地手合或远合时,在起动手合重动继电器(1-3)shj进行三相合闸时,又起动合后磁保持继电器kkj,其接点送给各套保护装置,作为判别永久故障的一个判据,同时还向各套保护装置送手合接点,以作为起动后加速的条件。
(2)本装置设有手跳和远跳的输入端子s。就地或远方手动跳闸时,起动手跳重动继电器(1-4)stj。在进行三跳的同时,使kkj复归。
9、交流电压切换回路
(1)双母线pt的二次电压切换回路是给保护装置和测量仪表提供被测量的母线电压,为了提高此回路的可靠性,本装置采用了双位置磁保持继电器构成交流电压切换回路。由母线隔离开关的常开辅助接点pk和其常闭辅助接点pb分别起动电压切换继电器的起动线圈和复归线圈。
(2)交流电压切换插件面板上装有分别指示交流电压回路切换至i母pt或ii母pt的黄色发光二极管。
10、本装置用于220vdc或110vdc直流电源时的变动方法
本装置各操作插件中元器件的参数按用于220vdc时选定。当用于110vdc时,只须将插件中部份电阻省去,并把电阻两脚焊盘短接即可。而不必为110vdc另设一组插件。
【关键词】继电保护技术可靠性分析应用
电力系统的第一道防护线就是继电保护系统,继电保护系统可以保证电力系统的正常运行,防止故障和异常对电力系统造成的不良影响。伴随着科学技术的发展,互联网在电力系统中被广泛应用,因此,本文首先对继电保护系统中影响可靠性的主要因素做出了简要分析,以及对需要重点保护的设施配置着重点出,首先要针对继电保护系统的可靠性进行简要阐述。
1继电保护系统的可靠性分析
1.1继电保护系统的可靠性定义
目前的继电保护可靠性理论研究大多数都没有涉及隐性故障和系统运行状态变化对继电保护系统可靠性的影响。因此,如何在电力系统在发生故障或出现威胁安全运行状况时,利用继电器来保护发电机、变压器、输电线路等电力系统元件免受损坏的措施,从而让工作人员能够及时排查故障、解决故障,降低损失。本文针对积点保护系统提出了简要的策略分析及应当重视的设备及配置。
1.2继电保护可靠性的影响因素
1.2.1保护装置硬件
微机保护装置实质是电子设备及相关软件构成的有机整体,其可靠性取决于组成保护装置的基本部件及整体电路设计可靠性水平,硬件的老化和损坏直接影响保护装置工作可靠性。
1.2.2保护装置软件
硬件是实现保护功能的平台,软件及其保护算法是保护功能实现的核心。这里的软件指与保护原理正确与否无关的程序设计、编制等问题,其可靠性难以根据物理要素进行预计,主要取决于保护原理的性能、系统输入以及软件设计等。
1.2.3互感器等相关设备
断路器、电流互感器TA以及电压互感器TV之类的设备传变输入量和执行输出动作的差错,将直接影响保护系统正确反映一次系统状态和正确动作的能力。
1.2.4二次回路
二次回路的绝缘老化、线路导致的接地或元件接触不良等均影响保护正确动作。
1.2.5继电保护原理
保护原理、保护特性、保护定值及一次系统运行状况都可能影响继电保护可靠性。
1.2.6保护系统的配置
对一次设备的保护是由多套保护相互配合,构成一个完善的保护系统以实现保护功能。保护系统的可靠性不仅与各套保护本身的可靠性有关,也与保护系统的配置方案有关。
经过上述分析,继电保护系统的可靠性可从两个方面来分析:一是从二次系统的角度,分析投入运行的继电保护系统在任何时刻处于可用状态的概率;二是结合一次被保护设备,分析继电保护系统正确工作的概率。
2继电保护系统可靠性的提高策略
为了提升继电保护装置的可靠性,应该从装置的各方面寻找影响可靠性的原因,为后续制的周期性维护制定准确有效的参考维护方案。传统继电保护装置都没有监视功能和定期自检功能,只能依靠工人参照王琦的检查记录进行周期性排查,以确保可靠性,还可以定期对保护装置进行检修和维修。目前,微机继电保护装置在电力系统中广泛使用,已被普遍应用于电力系统的线路保护、主变差动保护、励磁控制等多个方面。微机继电保护装置可以根据实际运行情况的需要配置进行相应保护,满足电力系统的各种需求,实现对其“量身定制”还可以自定义保护功能,在标准保护之外提供特殊保护,最大程度满足其要求。
现在,状态监视和定期自我检测功能被广泛运用在继电保护系统当中,依靠定期自检功能能够不间断的定期排查潜在故障隐患,二自检没有发现的故障亦可以依靠认为定期检测排查、清理,最大程度的保障了继电系统的可靠性。计算机系统的应用是继电保护系统装置的重点,计算机软件很大程度的影响着影响继电保护装置可的可靠性,因此,计算机程序在编写过程中的一点点误差和缺陷以及在运行过程中受到了外界的干扰,这都可能影响到软件的正常运行,造成软件判断错误,从而不利于继电保护装置的有效运行,影响保护装置的拒绝运行或者错误运行。
3在110kV电网中继电保护的一般配置
继电保护系统在电网中应用的关键在于电力系统的电压越来越高,容量越来越大,为电力系统安全、稳定和可靠的运行造成了较大难题,而继电保护系统配置的保护在一定程度上解决了这一难题。则以下两大配置应需重点分析。
3.1电力变压器的保护配置
电力变压器是是电力系统中十分重要的设备,通常电力变压器采用过电压保护、瓦斯、零序电流与间隙零序过电流以及过负荷保护来保护整个电力系统的安全稳定的运行。至于更高的220KV及以上则采用双重化原则,主保护及后备保护均为两套。
3.2母线继电保护的配置
首先要明确是的,我国针对110KV的母线保护要求为能够快速有选择性地去除故障,并应安装的母线保护套数为两套。对于中低压电网比较重要的母线,也需要要求设置专用的母线线路保护。对于新建的双套断路器失灵和母差保护是十分必要以及必须的,对已经卑职的保护系统也应该逐步的加强与完善。
线路继电保护完成不同的任务,其就配置不同的保护系统,可分为接地、相间故障保护,被保护元件处于不同条件电力网,可分为主输电网、次输电网以及配电线路保护。电压等级的划分也会影响到整个继电系统的保护及配置方式,因此我们要因地制宜,按实际情况具体分析,如光纤电流差动保护可以为主保护,而带时限的过电流保护应为后备保护
4结论
文中针对我国现有条件下,继电保护系统中影响可靠性的主要因素做出了简要分析,以及对需要重点保护的设施配置着重点出,继而分析可供参考的策略,最大程度保障继电系统的可靠性与稳定性,为电力系统的运行排除艰险、保驾护航保证电力系统正常运行,防止事故的发生,完善继电保护系统的评估方法对电力系统的未来发展具有重要意义,继电系统能否正常有序的工作与设备的有效保护将直接影响电力系统的正常运行,所以,我们要努力研究、探索、学习,最终掌握最先进的继电系统及在电网中保护设备配置的技术。
参考文献
[1]王钢,丁茂生,李晓华等.数字继电保护装置可靠性研究[J].中国电机工程学报,2004,24(07):48-53.
[2]洪梅,丁明等.保护系统的概率模型及其对组合系统可靠性的影响[J].电网技术,1997,21(08):44-48.
关键词:变电站;电力系统;继电保护装置
中图分类号:TD611+.2文献标识码:A
1前言
变电站的主要作用就是变换和分配电能,其作为电厂和电力用户的中间环节,被广泛地应用在电网中。正是由于变电站在电网中占有着重要地位,因此变电站能否正常工作就决定了电网是否坚强、稳定。而变电站中的继电保护装置又在变电站的运行中具有不可替代的作用,它能通过缩小事故范围或预防事故来最大限度地保证向用户安全连续供电,提高系统运行的可靠性。继保装置在变电站发生故障时,能准确、迅速地隔离、切除变电站内部发生的各种故障,保证没有出现故障的部分继续运行。此外,继保装置还能及时地发出警报,以便运行维护人员能够尽快发现故障、解决故障,避免大面积地区停电事故,确保电力系统安全、稳定运行。
2变电站继电保护装置的基本要求和主要任务
2.1基本要求
由于继电保护装置要求在变电站的设备和线路出现可能危及电力系统安全运行的故障时,能够及时控制相应断路器跳闸以控制故障的影响范围,并发出警报。因此,对其有以下基本要求:
(1)选择性。其主要要求内容就是上、下级电网(也包括同级)的继保装置之间应遵循逐级配合的原则来进行整定,以保证故障发生时能够有选择性地切除故障。例如,在变电站某个设备或线路发生故障时,应首先由故障点的保护动作来切除故障。当故障点的保护、断路器拒动时,才由相邻设备或线路的保护、断路器动作来切除故障。
(2)快速性,这是继保装置对动作时间的要求。在故障发生时,为缩小故障影响的范围,确保系统稳定性,减轻故障设备和线路的损坏程度,继保装置必须在最短时间内切除故障,这对提高备用设备自动投入和自动重合闸的效果也很有利。
(3)可靠性。若继保装置在变电站正常运行或故障不在保护范围内时动作了,就被称为误动;而若保护装置在应该动作时却没有动作就被称为拒动。继保装置在选用时都尽量采用运行经验丰富、装置可靠性高、原理简单和维护方便的保护,就是因为继保装置的误动和拒动会严重影响装置的可靠性,进而严重破坏电力系统的安全稳定运行。
(4)灵敏性。灵敏度越高,就说明继保装置对故障的反应能力越强,保护动作的反应时间越短。可以通过对继保装置的整定值进行调校来实现更好的灵敏性。整定值的调校应由供电部门具有校验资质的专业人士一年进行一次。
2.2主要任务
继电保护装置组成见图1,其主要任务包括:
(1)对变电站电气设备的不正常工作情况作出反应,一方面由装置自动地进行调整,另一方面将那些继续运行会引起事故的电气设备予以切除。并根据不同的设备运行维护条件和不正常工作情况发出相应信号,提醒变电站值班人员迅速采取措施以恢复电气设备的正常工作。
(2)监视变电站运行情况,最大限度地减少变电站故障对变电站设备和线路损坏,并降低故障对电力系统安全运行的影响。在故障发生时,故障点的继保装置应迅速准确地动作使故障设备或线路及时与电力系统断开。
(3)实现电力系统的自动化和远程操作,如备用电源自动投入、自动重合闸、遥控、遥测等工业生产自动控制功能。
3常用的变电站继电保护装置
在变电站中,常用的继电保护装置主要有:
3.1电压保护
(1)过/欠电压保护,主要是防止变电站设备由于雷击、雷电波入侵、操作过电压等特殊情况导致电压突然升高,或其他情况导致电压突然降低,致使电气设备损坏而设置的继电保护装置。如在变压器低压侧装设避雷器是用来防止雷电波从低压侧侵入而击穿变压器绝缘;在变压器高压侧装设避雷器就是用来保护变压器。
(2)零序电压保护,可用来预防因为变压器某一相绝缘遭到破坏时发生单相接地故障。零序电压保护在三相三线制中性点绝缘(不接地)的电力系统中有广泛的应用。在正常运行及相间短路时,一次侧零序电流为零(相量和),二次侧有很小的不平衡电流。在单相接地故障发生时,接地零序电流会流入电流继电器,一旦达到或超过整定值,继电器就会动作并发出信号。
3.2电流保护
(1)电流速断保护。理论上,电流速断保护没有时限,即以零秒及以下时限动作以切除故障。其一般按照变压器二次侧发生三相短路电流或被保护电气设备及线路末端可能出现的最大短路电流来整定动作值。
(2)过电流保护,一般会在时限上设有相应的级差,这是使上、下级过电流保护能具有选择性。为确保电气设备和线路的正常运行,其一般按照躲过被保护电气设备或线路中可能出现的最大负荷电流如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流来整定动作值。
电流速断保护和过电流保护常作为电气设备或线路的主保护和相邻线路的备用保护来配合使用。
(3)定时限过电流保护,其动作时间是恒定的,与短路电流的大小无关。定时限过电流保护一般由电流继电器、时间继电器和信号继电器三个元件组成,其中电流继电器用来测量电流大小,时间继电器用来设定动作时间,而信号继电器则发出动作信号。在被保护线路正常运行时,电流继电器不动作;而当被保护线路上发生故障时,电流继电器应可靠动作,经过设定好的动作时间,发生动作信号来切除故障。
(4)无时限电流速断保护,其只能保护一部分线路,不能保护整条线路。为了保证保护动作的选择性,其起动电流必须按通过被保护线路的电流为最大的运行方式整定。这是由于电流速断的保护范围会随着整定系统运行方式的变化而变化。此外,速断保护的特性受被保护线路的长短影响也较大,在线路较短时,保护范围就较小,受系统运行方式影响也较大;反之,当线路较长时,保护范围就较大,而且受系统运行方式的影响也较小。在规程中要求,无时限电流速断保护最小保护范围不应小于线路全长的15%。
3.3差动保护
差动保护是根据被保护电气设备发生短路故障时在保护中产生的电流差而动作的继电保护装置。差动保护在保护区内发生故障时,可以整定为瞬时动作。其对保护区外的故障不会动作,因此不需要与保护区外相邻元件保护在动作值和动作时限上相互配合。差动保护可以用来对双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障、变压器单相匝间短路故障进行保护。其保护范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。简而言之,就是输入两端TA之间的设备。由于差动保护原理简单、保护范围明确、使用电气量单纯、动作不需延时,所以差动保护被用作电压器、发电机和并联电容器的主保护装置,被广泛应用于35kV及以上电压等级变电站中[3]。
3.4电容器保护
主要用来防止电容器本身发生故障以及可能出现的引线短路故障,一般应配置带时限的速断保护和带外熔丝的电容器保护。若电容器组容量较大,可以加装零序保护或差动保护。
4变电站继电保护装置未来的发展趋势
4.1网络化
由于数据通信手段的限制,除了差动保护和纵联保护外,很多继电保护装置都只能对安装处的电气设备进行保护。但由于继电保护装置除了切除故障点电气设备、限制故障影响范围外,还要确保整个电力系统的安全稳定运行。这就要求各个保护单元与重合闸装置在分析运行和故障信息数据时协调动作,每个保护单元都能共享全系统的运行和故障信息的数据。显然,要实现这种系统保护功能就必须要将全系统各主要设备的保护装置连接已形成一个网络,即实现微机保护装置网络化。
4.2微机化
随着计算机硬件的迅猛发展,继电保护微机化的趋势越来越明显。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,继电保护装置的微机化是不可逆转的发展趋势。
4.3保护、测控、数据通信一体化
网络化、微机化后的继电保护装置实质上就是一台高性能、多功能的计算机,其作为整个电力系统计算机网络上的一个智能终端。一方面,它可以从电力网中获取电力系统运行和故障的任何信息和数据。另一方面,它还可以将被保护设备的任何信息和数据传送至电力网。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能。
4.4智能化
随着对人工智能技术如遗传算法、神经网络、小波变换、数据融合技术、进化规划、免疫理论、模糊逻辑等在电力系统中应用的研究的开展。继电保护领域相应的研究工作也在进行中,以神经网络技术为例,很多难以列出方程式或难以求解的复杂非线性问题在神经网络这种非线性映射的方法下,都会变得迎刃而解。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力,若将这些人工智能方法适当应用到继电保护装置的设计和动作值整定过程中去,将会大大促进继电保护领域向前发展。
结论
继电保护技术是一门综合性很强的学科,其在现代电力系统中的应用,为最大限度地保证向电力用户安全连续供电,提高系统运行的可靠性作出了巨大的贡献。随着继电保护在硬件和软件上不断地向前发展,其在系统实现和功能上都较以往的单纯隔离、切除故障有了很大的不同。继电保护的动作速度越来越快、集成化程度越来越高、自动化程度越来越强、保护之间的联系也越来越紧密,相应能够实现的功能也越来越多。因此,继电保护工作者应在实践中应不断总结经验,探索求新,推进继电保护技术的不断前进。
参考文献
[1]李忠平.变电站继电保护装置的作用及分类[J].科技资讯,2010,16:134-135.
一、回路调试
回路调试包括一次、二次系统的接线、保护、监控、打印等功能的全面校验和调试。
(一)一次、二次系统的接线检查
1.开关控制回路的调试
送出直流屏控制电源、合闸电源,检查一次开关侧储能电源或合闸电源保险是否合上,手动逐一合上装置电源开关和控制回路开关,检查控制回路、断路器位置指示灯是否对应,分合闸是否正常;如不正常要立即关闭控制电源,查找原因。
2.开关状态在后台机上的反应
手动逐一分合一次侧断路器、隔离开关、接地刀等,查看后台机上的显示名称、时间是否正确对应,断路器、隔离开关、接地刀状态显示是否正确。若与实际相反,检查断路器、隔离开关、接地刀辅助触电常开常闭.点是否接反,或检查后台机遥信量组态改正。
3.变压器等设备信号的检查
变压器本体瓦斯、稳定、压力等信号在后台机上的显示名称、时间是否正确;重瓦斯、压力信号应跳主变各侧断路器,轻瓦斯、温度高信号应报警。变压器测温电阻有3根出线,一根接测温电阻一端,另两根共同接测温电阻另一端,用以补偿从主变到主控室电缆本身的电阻,提高测温的精度。
4.二次交流部分的检查
用升流器在一次侧分别对A、B、C三相加单相电流,对二次电流回路进行完整性检查,不应出现开路或者串到其他回路的现象,在保护装置面板查看保护和测量回路电流的数值、相别,用钳流表在电度表测量计度电流,最后在后台查看电流显示是否正确。用升压器在TV二次侧分别对A、B、C三相加单相电压,检查对应母线上所有保护、测量、计量电压回路应有电压,其他母线上应无电压,保护装置面板、后台机电压显示值对应正确,用万用表测量计量柜电压也应该正确。加三相电压,用相序表测量保护、测量、计量电压相序与所加电压相序对应,如保护装置有TV切换功能,模拟运行实际条件,满足PT柜工作、试验位置逐一进行切换。
(二)装置保护功能的调试
装置保护功能的调试一般根据线路、变压器、电动机等继电保护装置类型,依据设计定值,用专用继电保护测试仪在保护装置上加电流或者电压,检查装置动作精度并传动断路器,在后台机上应正确显示保护动作信息,开关变位信息和动作时间数据。
(三)装置监控功能的调试
装置遥控功能的检查:后台应能可靠准确地遥控断路器分合闸。如遥控失败,查找原因。测控装置或控制回路是否上电;直流屏合闸电源或者一次开关处保险是否投入;测控装置通讯是否已通;装置远方、就地切换开关是否切到远方位置;断路器分合位置、工作试验位置是否在后台上正确反映;控制回路接线是否正确。
(四)装置打印、声音报警功能的调试
要求打印机设置正确,打印图形、报表完整美观,大小合适。能够实现自动打印和手动打印。对断路器、隔离开关等开关量加声响报警功能,对保护动作信息加声响报警功能。与智能直流屏、智能电度表、五防等装置的通讯应正确。在最后阶段还应对整个综自系统完善,确保综自系统防雷抗干扰,检查各屏上标签框上应做好正确标识。
二、系统调试
系统调试要求详细观察系统的运行状态,以便及时发现隐患。
(一)差动保护极性校验
主变压器带上一定的负荷后,才能判断出主变压器差动极性。在监控后台机上查看某一时刻主变电流采样数据,根据差流相数据的大小判断差动极性,也可通过对各相电流的波形分析差动极性。正常状态下,对于两圈变压器在同一时刻,主变压器高低压侧A-a,B-b,C-c相电流波形应正好相反,即高压侧为正半波数据,低压侧为负半波数据,且最大值相加应为0。对于三圈变压器,送点侧与受电侧各侧电流波形相反,且最大值相加应为0。如相反,则需等停电以后在TA二次侧更改极性接线。
(二)带方向保护的方向校验
线路带上一定的负荷后,在监控后台机上查看某一时刻同相电流电压数据进行分析。例如:线路输送功率为从变电站向线路送电,则A相电压正半波最大值应超前A相电流正半波最大值一定角度(最大不超过180度),即同半波数据内电流最大值落后电压最大值几个采样点;否则,线路保护方向错误。
三、常见问题及解决方法
(一)定值的问题
继电保护调试过程中的定值问题,一般主要包括计算误差、人为原因和装置定值的不确定性几个方面。在开展继电保护调试过程中,由于使用了一些新设备,其特点功能还没有被人们彻底熟悉、了解,必然导致了在运用操作时难以正确掌握。这样,就会造成人们依据以往的经验进行估计,使得继电保护调试的定值不易定准。如果以标值来计算设备的定值时,往往就会有很大的差距,从而导致了定值的不准确,而且还会导致了设定的定值在设备发生故障以后,不能及时灵敏、准确地反映出来,失去了其应有的作用。因此,我们必须及时、准确地向相关业务操作人员提供技术参数与定值,并在保护调试完设备以后,及时稳妥地把相关资料移交相关单位部门保管留存,以备需要时能及时获取。
(二)电源的问题
电源问题是继电保护调试过程中最为常见的问题之一。一般体现在逆变稳压电源的问题、直流熔丝配置的问题和直流电源操作插件问题等。继电保护调试逆变电源的工作原理,就是把输入110伏或者220伏的直流电源经过开关以后,使得电路变成了方波交流,然后再经过逆变器,变成了需要的不同的电流电压。这种情况下,在继电保护调试现场,比较容易发生的事故故障主要有纹波系数偏高、输出功率不够、稳定性比较差等。因此,继电保护调试一般要求直流设备装置都需要有相当高的精确度。
继电保护对我国电力系统的安全运行,起着不可替代的作用,在我国经济持续发展,对电力要求不断增大的情况下,要做好继电保护工作,就要对继电保护装置的现场调试有深刻的了解和对常见问题的处理能力,并要及时掌握未来技术发展的方向。
参考文献
[1]王鹏,李明.继电保护现场调试需要注意几个问题[J].工作研究,2009.
[2]韦强.关于微机型继电保护装置的现场调试浅析[J].电气传动自动化,2011.2.
一、电动机保护与控制的关系
电动机的保护往往与其控制方式有一定关系,即保护中有控制,控制中有保护。电动机直接起动时,往往产生4—7倍额定电流的起动电流。若由接触器或断路器来控制,则电器的触头应能承受起动电流的接通和分断考核,即使是可频繁操作的接触器也会引起触头磨损加剧,以致损坏电器;对塑料外壳式断路器,即使是不频繁操作,也很难达到要求。因此,使用中往往与起动器串联在主回路中一起使用,此时由起动器中的接触器来承载接通起动电流的考核,而其他电器只承载通常运转中出现的电动机过载电流分断的考核,至于保护功能,由配套的保护装置来完成。
对电动机的控制还可以采用无触点方式,即采用软起动控制系统。电动机主回路由晶闸管来接通和分断。有的为了避免在这些元件上的持续损耗,正常运行中采用真空接触器承载主回路负载。这种控制有程控或非程控;近控或远控;慢速起动或快速起动等多种方式。另外,依赖电子线路,很容易做到如电子式继电器那样的各种保护功能。
二、电动机保护装置
电动机的损坏主要是绕组过热或绝缘性能降低引起的,而绕组的过热往往是流经绕组的电流过大引起的。对电动机的保护主要有电流、温度检测两大类型。
(一)电流检测型保护装置
1、热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器;从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JRl6型。
2、带有热——磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠。
3、电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点有:多种保护功能,动作时间可选择,电流整定范围广以及有故障显示。
4、固态继电器它是一种从完成继电器功能的简单电子式装置发展到具有各种功能的微处理器装置。其成本和价格随功能而异,最复杂的继电器实际上只能用于较大型、较昂贵的电动机或重要场合。它具有监视、测量和保护的功能。
5、带有电子式脱扣的电动机保护用断路器其动作原理类同上述电子式过电流继电器或固态继电器。功能主要有:电路参量显示,负载监控,多种保护特性,故障报警,试验功能,自诊断功能,通信功能等。
6、软起动器软起动器的主电路采用晶闸管,控制其分断或接通的保护装置一般做成故障检测模块,用来完成对电动机起动前后的异常故障检测,如断相、过热、短路、漏电和不平衡负载等故障,并发出相应的动作指令。其特点是系统结构简单,采用单片机即可完成,适用于工业控制。
(二)温度检测型保护装置
1、双金属片温度继电器它直接埋入电动机绕组中。当电动机过载使绕组温度升高至接近极限值时,带有一触头的双金属片受热产生弯曲,使触点断开而切断电路。
2、热保护器它是装在电动机本体上使用的热动式过载保护继电器。与温度继电器不同的是带2个触头的碗形双金属片作为触桥串在电动机回路,既有流过的过载电流使其发热,又有电动机温度使其升温,达到一定值时,双金属片瞬间反跳动作,触点断开,分断电动机电流。它可作小型三相电动机的温度、过载和断相保护。
3、检测线圈测温电动机定子每相绕组中埋入1—2个检测线圈,由自动平衡式温度计来监视绕组温度。
4、热敏电阻温度继电器它直接埋入电动机绕组中,一旦超过规定温度,其电阻值急剧增大10—1000倍。使用时,配以电子电路检测,然后使继电器动作。
三、保护装置与异步电动机的协调配合
过载保护装置的动作时间应比电动机起动时间略长一点。电动机过载保护装置的特性只有躲开电动机起动电流的特性,才能确保其正常运转;但其动作时间又不能太长,其特性只能在电动机热特性之下才能起到过载保护作用。
过载保护装置瞬时动作电流应比电动机起动冲击电流略大一点。如有的保护装置带过载瞬时动作功能,则其动作电流应比起动电流的峰值大一些,才能使电动机正常起动。
过载保护装置的动作时间应比导线热特性小一点,才能起到供电线路后备保护的功能。
过载保护装置与短路保护装置的协调配合一般过载保护装置不具有分断短路电流的能力。一旦在运行中发生短路,需要由串联在主电路中的短路保护装置来切断电路。若故障电流较小,属于过载范围,则仍应由过载保护装置切断电路。故两者的动作之间应有选择性。
关键词:变电站自动化;监控;网络
abstract:basedonthepresentstateofsubstationautomationforelectricpowersysteminchina,theexistingdefectsofsubstationautomationareanalyzedthesubstationautomationsystemstructureandfunctionconfigurationprinciplestomeettherequirementsofunmannedsubstationarediscussed.byinvestigatingthepresentoperationalsituation,theauthorputsforwardthesuggestionsforimprovement.
keywords:substationautomation;monitoringandcontrol;network
当前进行的输变电建设和城乡电网的建设与改造,对新世纪电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。为此有必要对我国变电站自动化的现状作深刻的分析,发现问题并提出改进意见,使我国城乡变电站自动化的水平达到上述要求。
1变电站自动化的现状
变电站二次设备按功能分为四大模块:①继电保护及自动装置;②仪器仪表及测量控制;③当地监控;④远动。四大模块功能的各自不同的发展及其功能的相互渗透,为变电站自动化提供了多种多样的实现模式,可概括为两种基本实现模式:①保护加集中rtu模式,面向功能;②保护加分散rtu模式,面向对象。
1.1保护加集中rtu模式,面向功能
(1)继电保护及自动安全装置独立运行;仪器仪表独立运行;中央信号盘及控制盘与继电保护及自动安全装置通过接点连接;有人值班,定时抄录运行记录;变电站运行有异常时通过电话与调度联系。
(2)继电保护及自动安全装置独立运行;仪器仪表独立运行;中央信号盘及控制盘与继电保护及自动安全装置通过接点连接;集中rtu,功能有①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度(电度表通过脉冲与rtu连接),完成数字量采集如档位等,完成信号量采集(其中继电保护及自动安全装置也通过接点与rtu连接)。②控制功能:控制开关、分级头等。③通信功能:与当地监控通信,与远方调度通信;有人值班,运行当地监控,定时抄录运行记录;变电站运行有异常时通过rtu及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(3)继电保护及自动安全装置独立运行;仪器仪表独立运行;集中rtu,功能有①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度(电度表通过脉冲与rtu连接),完成数字量采集(其中继电保护及自动安全装置通过串口与rtu通信),完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:与当地监控通信,与远方调度通信;有人值班,运行当地监控,变电站运行有异常时通过rtu及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(4)继电保护及自动安全装置独立运行;仪器仪表独立运行;集中rtu,具有的功能为①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度(电度表通过脉冲与rtu连接),完成数字量采集(其中继电保护及自动安全装置通过串口与rtu通信),完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:与远方调度通信;无人值班,变电站运行有异常时通过rtu与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(5)继电保护及自动安全装置独立运行;仪器仪表独立运行;集中rtu,模块式设计,功能为①数据采集功能:智能模拟量采集模块,智能脉冲量采集模块,智能数字量采集模块(其中继电保护及自动安全装置通过串口与rtu通信),信号量采集模块。②控制功能:智能控制量输出模块。③通信功能:与远方调度通信;无人值班,变电站运行有异常时通过rtu与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
1.2保护加分散rtu模式,面向对象
(1)继电保护及自动安全装置独立运行;仪器仪表独立运行;分散rtu,面向对象,单元式设计,其功能有①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度,完成数字量采集,完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:与当地监控通信;继电保护及自动安全装置通过串口与当地监控通信;当地监控与调度通信;有人值班,运行当地监控,变电站运行有异常时通过当地监控及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(2)继电保护及自动安全装置独立运行;仪器仪表独立运行;分散rtu,面向对象,单元式设计,功能有①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度,完成数字量采集,完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:与前置采集机通信;继电保护及自动安全装置通过串口与前置采集机通信;前置采集机与当地监控及调度通信,前置采集机可以采用两台,互相切换,当地监控也可以采用两台或多台;有人值班,运行当地监控,变电站运行有异常时通过前置采集机及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(3)继电保护及自动安全装置独立运行;仪器仪表独立运行;分散rtu,面向对象,单元式设计,具有以下功能①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度,完成数字量采集,完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:与前置采集机通信;继电保护及自动安全装置通过串口与前置采集机通信;前置采集机与调度通信;无人值班,变电站运行有异常时通过前置采集机及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(4)继电保护及自动安全装置独立运行;仪器仪表独立运行;分散rtu,面向对象,单元式设计,其功能为①数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度,完成数字量采集,完成信号量采集。②控制功能:控制开关、分级头等。③通信功能:通过总线网与当地监控及远方调度通信;继电保护及自动安全装置通过总线网与当地监控及远方调度通信;有人或无人值班,运行当地监控,变电站运行有异常时通过远动及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
(5)继电保护及自动安全装置与分散rtu合二为一,具备的功能为①继电保护及自动安全装置功能。②数据采集功能:完成模拟量采集如电流、电压、有功、无功等,完成脉冲量采集如电度,完成数字量采集,完成信号量采集。③控制功能:控制开关、分级头等。④通信功能:通过串口或总线网与当地监控及远方调度通信;仪器仪表独立运行;有人或无人值班,运行当地监控,变电站运行有异常时通过远动及电话与调度联系,调度可以远方监视变电站运行情况和遥控变电站设备。
除了以上10种模式外可能还有其他种类,如安装方式就地化、某些功能分散化等,但都可归为以上两大模式。第一大模式对老站改造特别适合,第二大模式是正在发展的模式。下面讨论其技术发展的走势。
2变电站自动化的发展
2.1分层分布成为潮流
变电站自动化系统纵向分层:站级层、网络层、就地层;每层按功能或安装位置横向分布。
(1)站级层横向按功能分布为当地监控和继保功能及远方监控和继保功能。站级层功能分布的形式取决于网络层的结构。
当地监控功能作为当地运行人员的人机交互窗口,以图形显示、报表打印、语音报警等各种方式实现当地“四遥”即对系统运行状况如潮流、电度、开关状态等进行实时监视,按需及“五防”要求控制开关及刀闸的跳合,按需调节档位,以及有关mis系统。
当地继保功能作为当地继保人员的人机交互窗口,也可以图形显示、报表打印、语音报警等各种方式对继保及自动安全装置的运行状况如装置是否故障、定值是否改变、采样是否准确等进行实时监视,根据运行需要决定保护投退和定值修改,故障发生后通过故障录波进行故障分析和诊断。
当地监控和继保功能可以各自独立,也可以合二为一。
远方监控和继保功能是当地监控和继保功能通过通信在远方实现,是无人值班变电站的前提条件。远方监控和继保功能同样可以各自独立即通过不同的通道和规约分别接至调度和继保,也可以合二为一即通过同一通道接至远方终端。
站级层基本要求为①可靠性:不能死机、能够自动恢复等。②开放性:模块化设计便于剪裁、适合不同远方规约要求。
(2)网络层完成信息传递和对时功能,通过信息交换,实现信息共享,减少变电站设备的重复配置,简化设备之间的互连,从整体上提高变电站自动化系统的安全性和经济性。目前有两种通信机制:polling通信机制及csma/cd通信机制。polling拓扑结构可以是星形网也可以是总线网,以485为代表。csma/cd拓扑结构一般为总线网,以lon为代表。可以通过485转lon的转接器及lon的计算机串口卡或总线卡完成这两种网络的互换。
下面分析485,lon这两种网的优缺点(如表1)。
表1485,lon网性能对照表
性能485星形网485总线网lon总线网通信机制pollingpollingcsma/cd拓扑结构星形网总线网总线网计算机接口多串口卡串口卡/总线卡串口卡/总线卡通信速率9.6kbps9.6/187.5kbps9.6/78kbps最大节点数不限3264最大通信距离2000m1000m2000m传输介质双绞线/光纤双绞线/光纤双绞线/光纤传输能力字节传输字节传输字节传输报文格式显式报文显式报文显式/隐式报文网管工具不需不需不需/需要节点增加方便方便方便/麻烦字节丢失不可能不可能可能最快实时性波特率1
节点数波特率1
节点数波特率1
节点数一般实时性较慢较慢较快最慢实时性波特率
节点数波特率
节点数可能丢失网络可靠性很可靠较可靠较可靠站级层功能分布需要双前置需要双前置需要双lon卡采集方式单采、故障时
切换单采、故障时
切换双采、各采
各送下位网双网结构可以可以可以下位网网络分段可以可以可以对外开放性开放开放困难需要文件传输时采用以太网采用以太网采用以太网上位网双网结构可以可以可以单机方式时单前置为瓶颈单前置为瓶颈当地和远方独立不需当地功能时没有瓶颈没有瓶颈没有瓶颈就地层设备互操不能不能可以
网络层基本要求是①可靠性:抗干扰能力强、任一节点损坏不能影响整个网络等。②开放性:兼容其他外部设备,适合不同通信介质及规约要求。③实时性:实时传递信息。
(3)就地层主要是继保、监控设备层,可组屏也可分布在各继电保护小间内即安装在开关柜上,继保、监控既可以各自独立也可以合二为一。它对相关一次设备进行保护、测量和控制,协调就地层、站级层、远方终端的操作要求,对采集的信息进行处理上送,并在站级层、远方终端控制失效的情况下仍能完成保护、测量和控制功能。
保护及自动装置基本要求是①可靠性:该动作时应动作,不该动作时不动作。②选择性:首先由故障设备或线路本身的保护动作,如其拒动时由相邻设备或线路的保护动作。③灵敏性:保护装置对保护范围内的故障应具备必要的灵敏系数。④速动性:尽快切除故障,提高系统稳定性,减轻损坏程度等。
测量控制装置基本要求是①可靠性:抗干扰能力强,控制被控对象时,其他对象不能乱动。②准确性:模拟量测量、脉冲量测量、开关量测量、数字量测量达到规定精度要求。
(4)三层之间的关系。站级层、网络层、就地层既相互独立又相互联系,站级层功能的实现依赖于网络层和就地层的完好性,但是就地层功能的实现,特别是继电保护及安全自动装置的功能的实现决不能依赖于网络层和站级层的完好性。
(5)整体性能的考虑。必须满足如下10项基本要求:可靠性、开放性、实时性、选择性、灵敏性、速动性、准确性、经济性、方便性、统一性。
2.2现场设备功能的相互渗透
随着变电站自动化的发展,各专业技术相互渗透,已没有非常明显的界限,问题的处理需要各专业人员协同配合,否则将阻碍变电站自动化技术的发展。
2.2.1低周减载的分散化
低周减载将分散到220kv出线、110kv出线、66kv出线、35kv出线、10kv出线、220kv主变的中低压侧后备保护、110kv主变的中低压侧后备保护、35kv主变的低压侧后备保护等,从而形成低周减载的网络。
2.2.2小电流接地选线的分散化
众所周知,小电流接地选线的基本原理如下:
(1)对中性点不接地系统采用:①比较基波零序电流大小;②比较基波零序功率方向;③比较基波零序电流方向;④比较基波电流最大值方向。
(2)对中性点经消弧线圈接地系统采用:①比较五次谐波电流大小;②比较五次谐波功率方向;③比较五次谐波电流方向;④比较五次谐波电流最大值方向。
因此将小电流接地选线分散到出线保护中,不能单独完成选线功能,必须依赖就地层所有出线保护装置、网络层、站级层的完好性,将所有出线同时刻信息汇总后,才能作出正确判断,同时刻信息的条件可以采用3u0的同时出现来满足。
将小电流接地选线分散到出线保护中,可以独立实现自动或手动接地探索,通过跳闸和重合闸来进行。
小电流接地选线功能不是可有可无的不重要的功能,现场报道过当出线发生单相接地故障后由于未能及时报警故未能及时解除故障而导致人畜伤亡的不幸事件。因此小电流接地选线的分散化,成为一个争论的焦点。
2.2.3同期操作的分散化
传统自动同期重合闸,由保护装置的同期检测回路及软件共同实现。
传统开关的手动或遥控同期操作,由手动或遥控继电器切换同期点的电压及同期点的合闸操作回路和同期判别装置共同实现。
因此传统的集中同期方式接线复杂。
可以将手动或遥控同期功能分散到保护装置中,或分散到单元式测控装置中。
2.2.4母线保护的分散化
传统母线保护必须把母线所有的ta二次集中到母线保护装置中,母线保护的出口又必须连接到母线上各元件的跳闸回路,因此接线复杂。
母线保护能否分散到线路保护中,并通过专用网络传递信息,实现母线保护功能,可以采用gps同步。由于母线保护的重要性,因此母线保护的分散化成为又一个争论的焦点。
2.2.5故障录波的分散化
故障录波的作用为:①分析继电保护及安全自动装置的动作行为;②分析故障过程、故障类型、故障水平、故障远近等。
因此故障录波的分散化不影响变电站自动化的可靠性,但是怎么分散才能达到故障录波的应有作用是值得考虑的。
目前利用继电保护及安全自动装置提供的数据来替代故障录波是不恰当的,其理由为:①故障录波的完好性依赖于继电保护及安全自动装置的完好性,自己不能证明自己;②分散式故障录波应从模拟量输入、开关量输入、数据采集、数据的分析判断以及电源都独立于继电保护及安全自动装置。
因此重要的变电站在独立的分散故障录波出来之前,应采用集中式故障录波。
2.2.6电压和无功的控制
电压和无功的控制一般采用调整变压器分接头,投切电容器组、电抗器组、同步调相机等方式实现。操作方式有:手动、遥控、自动。
目前电压和无功的控制功能有两种实现方式:①专门的电压和无功控制设备;②由站级层根据就地层通过网络层提供的电压、无功、抽头、开关状态等信息由软件完成。
2.2.7“五防”操作及操作票
防误闭锁方式基本有:简单的挂锁、机械连锁、电磁锁、程序锁及微机防误系统等。
①防误系统与站级层的当地监控及远动主站通信,确保当地监控与远动对断路器、电动刀闸的控制操作经防误系统允许;②防误系统出具操作票;③就地操作经五防锁控制。
将“五防”功能由就地层本身实现,达到本单元“五防”功能;
将“五防”功能由当地监控和远动主站本身实现,达到系统级“五防”功能。
2.2.8gps对时问题
传统gps对时是由gps同站级层对时然后通过网络层对就地层设备广播对时,此方法缺点是就地层设备对广播对时的响应不一致导致对时精度不能真正满足soe的要求,因此应将gps直接对就地层设备对时。
2.2.9保护测控一体化
对低压设备或农网设备,可以将保护、测控合二为一,当然ta回路要分开,以保证精度要求。
一体化装置必须优先满足继电保护及安全自动装置的四性要求。一体化装置的出现要求用户体制适当调整。
未来有可能将智能仪表、电源等同以上功能一体化。
2.3现场设备安装方式的就地化
就地层设备直接下放到开关柜,对没有开关柜的直接采用专用柜体安装到一次设备现场。
就地层设备需达到几项要求:①温度、湿度适用范围;②抗干扰能力;③抗振动能力;④对灰尘、风霜雨雪环境的要求等。
2.4远方调度的新发展
不再满足于“四遥”功能,向遥视、电力mis、电力市场(经济调度)、智能调度(自动决定运行方式、自动恢复送电等)方向发展。
需要对远动规约进一步扩充,才能满足远方调度的新发展。
2.5远方继电保护进一步发展
远方监视继电保护及安全自动装置的运行情况,如装置是否故障、采样是否正确、定值是否变化、自检是否正常等,远方修改保护定值,远方投退保护,远方故障录波,远方故障测距,远方故障探索,远方故障分析等。
远方继电保护可以同远动共通道也可以不共通道,但其规约不同于远动规约,需要有关部门尽早制定,或同远动规约合并,以便远方继电保护的发展。
2.6无人与有人值班的争论
(1)防火、保安系统怎么接入。
(2)变压器渗油、非正常声音、瓷瓶开裂、局部放电等非电气量怎么处理。
(3)一次设备是否全部可以电动操作。
(4)设备损坏但未能远方报警等。
以上是实现无人值班的障碍。因此现在变电站基本处于从多人值班到少人值班,从少人值班到无人值班有人巡视的逐步过渡的过程。
实行无人值班有人巡视方式时,站级层设备中当地监控可有可无,因此网络层采用polling机制比采用csma/cd机制可靠性高,当地监控将被远方调度的监控系统取代,为方便当地调试可以预留当地监控的接口,以便同便携机相连,临时代替当地监控的功能。
3结论
(1)分层分布成为潮流。
(2)站级层中当地监控功能将随着无人值班而消失,其功能将会出现在小区中心值班站或调度所,相应地远动功能将进一步增强。
(3)网络层技术特别是现场网将进一步发展。
(4)就地层设备功能的相互渗透、安装的就地化、工艺的提高、使用的方便性将会进一步深化。
(5)远动规约、现场设备的规约进一步扩充和规范。
(6)远方继电保护进一步发展。
(7)向其他相关领域技术渗透。
参考文献
〔1〕杨奇逊.变电站综合自动化技术发展趋势[j].电力系统自动化,1995,19(10)
〔2〕朱大新,刘觉.变电站综合自动化系统的内容及功能要求和配置[j].电力系统自动化,1995,19(10)
关键词:电力系统;整定计算;继电保护;危险点;辐射型电网
中图分类号:TM771文献标识码:A文章编号:1009-2374(2011)34-0146-03
一、继电保护的特点
(一)电力系统中继电保护和安全自动装置的重要性
在电力系统中继电保护和安全自动装置是保证系统安全运行的重要组成部分,当高压设备进投入使用时,继电保护和安全自动装置必须投入运行。
(二)继电保护的原理
继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、功率、频率等)的变化,构成继电保护动作的原理。应用于电力系统中的各种继电保护绝大多数都是反映电力系统故障时的电流增大、电压降低,以及电流与电压间相位角变化,与正常运行时各物理量的差别来实现的。
(三)继电保护和安全自动装置的作用
在电网运行过程中继电保护和安全自动装置能实现变电站实现无人值班及综合自动化。它的作用主要体现在以下三个方面:
1.反映故障。它可以在电网发生能够损坏设备或者危害电网安全运行故障时使被保护设备快速脱离电网。
2.反映异常。当电网中的设备出现非正常状态时能发出报警信号,使值班人员迅速采取解决措施使其恢复正常。
3.实现变电站的自动化。它可以使继电保护和安全自动装置直接与高压设备配合。
(四)电力系统运行对继电保护装置的要求
快速性、可靠性、选择性和灵敏性这“四性”是电力系统对继电保护装置的基本要求。快速性是对继电保护装的最根本要求,强调的是有故障就必须动作。因为时间越长故障对电力系统的危害就随之增大。可靠性是指继电保护装置发生故障时也要可靠动作而不能拒动。因为拒动的危害远大于误动。选择性强调的是保护装置不能误动,不能产生误操作。灵敏性则要求保护装置反应灵敏、动作范围准确,正确反映故障范围,减少停电面积。
二、继电保护整定计算的工作内容
(一)确定保护方案
我们整定计算人员必须结合电网的实际情况,针对变压器的特点对保护功能进行选择。现今市场上的微机都已经配了十分齐全的功能保护块,但是不是每一项功能在实际保护装置中需要应用,所以必须对保护功能有所取舍。
(二)各保护功能之间的配合关系的确定
1.装置内部各功能单位之间的配合关系。在由几个电气量组成的一套保护装置内部,各元件的作用不同,其灵敏度和选择性要求也不相同。对于主要元件的要求是既要保证选择性又要保证灵敏性,而作为辅助元件则只要求有足够的灵敏性,并不要求有选择性。在整定配合上,要求辅助元件的灵敏度要高于主要元件的灵敏度。辅助元件在保护构成中,按作用分为以下三种:(1)判别作用。为了保护的选择性而装设的。如方向过流保护中的方向元件;(2)闭锁作用。为了防止正常负荷下拘误动而装设的。如母差保护中的电压闭锁元件;(3)起动作用。为了在故障情况下,将整套保护起动起来进行工作而装设的。当继电保护装置还处于采集模拟电气量阶段时,上述元件往往由一个个独立的硬件实现,而目前微机保护装置反映的是离散化的数字量,以上功能均由软件实现。虽然,微机保护装置中各元件的意义与过去不尽相同,但它们所起的作用却无本质上的区别。
继电保护整定计算人员必须认真分析各功能块的动作特性,各功能块之间的逻辑关系,并结合被保护设备的故障特征来综合进行考虑,确定保护装置内部各功能块之间的配合关系,并以整定值的形式将配合关系实现。
2.装置之间的协调配合关系。这也就是我们一般意义上的继电保护整定计算需要做的工作。通过短路电流计算,将某一保护装置与相邻的保护装置在灵敏度与动作时间两方面相配合,从而保证选择性。即当电力系统发生故障时,故障线路的保护必须比上一级相邻线路更灵敏,动作更快,两者缺一不可。若要提高灵敏度就要延长动作时间;若要提高动作速度就要限制其灵敏度,这实际上是在遵循反时限的原则。
随着电网规模的不断扩大,特别是现代超高压电网要求保护装置不但要做到不误动,更要做到不拒动。要达到继电保护四性的要求,不应由一套保护来完成。就一套保护而言,它并不能完全具备四性的要求,而必须由一个保护系统来完成。我们在进行整定计算时,必须树立系统保护的概念,多角度、全过程地考虑各个功能块之间的配合关系。
(三)保护方案的准确表述
编制继电保护整定计算方案及给出保护定值并不是整定计算工作的最终目的,整定计算工作的最终目的在于通过保护定值使得继电保护装置在系统故障或异常状态下能按预定的行为进行动作,从而保证电网的稳定运行,将被保护设备的损害降至最低以及缩小停电范围。因此,在确定好了保护方案及各保护功能的配合关系后,如何将保护方案准确的表述也是整定计算工作者的一项十分重要的工作。
这其中除了包括编制整定计算方案和给出继电保护定值,还有一项就是编制运行规定。整定计算工作者往往十分重视前两项工作,而忽视编制运行规定。需知,用准确的语言告诉运行人员某个保护功能块在什么情况下用,做什么用,这也是十分重要的。
三、整定计算的危险点分析
(一)系统建模
一个符合电网实际的、描述完整、正确无误的电网数据模型,是一切计算的基础。目前,我们电网应用的RCMBase2000是一个通用性和实用性非常强的软件平台,利用对RCMBase2000的二次开发,我们可以完成继电保护计算及管理的大部分工作。对于日常的整定计算工作不需要我们去重新开发软和构建网络扑连接,只需要我们把每一项基础数据搞准确,严格按《3~1lOkV电网继电保护装置运行整定规程》上的要求进行电气设备的实测,并正确的将数据填充到RCMBase2000中,就能够做到建立一个完整的符合电网实际的数据模型。但是,在实际工作中,往往会有各种各样的原因使得我们的基础数据管理出现漏洞。所以,我认为电网基础数据管理这一环节是继电保护整定计算工作的危险点。
(二)故障计算
短路电流计算是整定计算工作中非常重要的基础性工作,它的正确与否决定着整定计算的正确与否。而短路电流计算的正确与否又取决于合理地选择运行方式和变压器的接地方式。
合理地选择运行方式是改善保护效果,充分发挥保护系统功能的关键之一。但选择运行方式应与运行方式专业进行充分沟通,考虑各方面的因素才能决定。
变压器的接地方式是由继电保护整定计算人员来确定的。合理地选择变压器的接地方式可以改善接地保护的配合关系,充分发挥零序保护的作用。由于接地故障时零序电流分布的比例关系,只与零序等值网络状况有关,与正、负序等值网络的变化无关。零序等值网络中,尤以中性点接地变压器的增减对零序电流分布关系影响最大。因此,合理地选择变压器的接地方式应尽可能保持零序等值网络稳定。
在进行故障计算时我们还应注意以下两点:(1)就是我们假设电网的三相系统完全对称。若系统是不对称的,那么不能用对称分量法来分析化简,进行计算;(2)除了母线故障和线路出口故障外,故障点的电流、电压量与保护安装处感受到的电流、电压量是不同的。我们分析的是保护安装处的电气量的变化规律。
(三)配合系数的选择
配合系数包括了零序网络的分支系数和正序网络的助增系数。分支系数(或助增系数)的正确选取,直接影响零序保护(或距离保护)定值和保护范围的大小,也影响保护各段的相互配合及灵敏度。分支系数(或助增系数)的计算与故障计算无关,而与电工基础有关,即电路的串、并联关系决定了电流的分布,决定了分支系数(或助增系数)的大小。下面分三方面来概述分支系数(或助增系数)的计算。
1.辐射型电网。如图1所示,电流分支系数Kf是相邻线路发生短路故障时,流过本线路的短路电流占流过相邻线路短路电流的比值。对于距离保护,助增系数等于电流分支系数的倒数。
为了简化计算,将上式中电流、阻抗取其绝对值,对分析结果的影响很小,可忽略不计。
对于辐射型电网来说,分支系数只与保护支路的阻抗分支线路的阻抗有关,而与配合支路的阻抗无关。所以,故障点的位置对分支系数没有影响。若要取最大分支系数,只需选本线路侧电源为最大运行方式,分支线路侧的电源为最小运行方式,即母线B上剩余电源支路采取小方式即可。
2.单回线与相邻双回线保护配合(如图2)。
单回线与相邻双回线配合时,应采用双回线并列运行,故障点在相邻双回线末端零序分支系数最大。随着故障点在配合支路上由母线B向母线C移动,零序分支系数由小于1的数到2之间变化。
3.双回线与相邻单回线保护配合。
双回线与相邻单回线配合时应断开双回线其中一回,电源A应取大方式,电源B(Z3)应取小方式,可得最大零序分支系数。此时,故障点在配合支路上任一点对分支系数的大小无影响。通过以上分析可以看出,配合系数的选择也是继电保护整定计算工作的关键点。
(四)微机保护小量的选择
随着电磁式保护和晶体管、集成电路型保护的逐步退出运行,微机型继电保护装置在电力系统中发挥着愈来愈重要的作用。不同的保护厂家生产出的微机保护原理不同。对于整定计算人员必须熟悉自己电网所装设的保护装置,不但要熟悉这些保护装置的原理,更应该注意保护装置中控制字的正确设置,否则将无法使保护装置正确地发挥作用。要做到正确设置控制字,一定要认真研究说明书,如果说明书不能够讲明白,我们应找到该保护装置的研发人员,将该保护功能的设计意图讲明白。
【关键词】变电站;继电保护;备自投;配置;GOOSE网
近几年,我国电力建设得到快速的发展,呈现了电压高、容量大、送电距离远、传输功率大等趋势,因此,稍有扰动,容易失去稳定,甚至酿成整个系统崩溃瓦解,确保电力系统的安全稳定运行,是电网工作的首要任务。继电保护配置,作为电网安全运行的防线,在维护电网的稳定中占据重要的作用,因此,继电保护配是电网安全运转的基础。而变电站作为电网的节点,其继电保护的有效性同样十分重要。下面,就变电站继电保护配置进行探究。
1智能变电站特点
智能变电站为开放式分层分布式系统,由站控层、间隔层和过程层构成,采用IEC61850通信标准。其站内信息具有共享性和唯一性,可保证故障信息、远动信息不重复采集。
站控层由主机(兼操作员站)、远动通信装置和各种二次功能站构成,提供站内运行的人机联系界面,实现管理控制间隔层、过程层设备等功能,形成全所监控、管理中心,并与远方监控/调度中心通信。
间隔层由若干二次子系统组成,包括保护、测量、计量等设备。在站控层及站控层网络失效的情况下,它仍能独立完成间隔层设备的监控和保护功能。
过程层由电子式互感器、合并单元、智能单元等构成,完成二次系统与一次设备相关的功能,包括实时运行电气量的采集、设备运行状态的监测、控制命令的执行等。
智能变电站与常规变电站的区别主要体现在以下几个方面:
(1)出现了一些新设备,如电子式互感器、合并单元、智能终端等。
(2)网络交换机大量应用。
(3)二次接线设计大量采用光缆。
2智能变电站继电保护配置探究
典型的110kV变电站主接线为高压侧(110kV)内桥接线、低压侧(10kV)单母分段接线。
2.1网络配置
站控层采用单星型以太网络;推荐全站过程层配置单星型以太网络,采用GOOSE与SV共网方式。
(1)因间隔数较少,为减少交换机投资,推荐不按电压等级组建过程层网络。
(2)110kV侧间隔保护单套配置,所以过程层网络单重化配置。如主变保护双套配置,第二套主变保护与110kV桥备自投之间采用以GOOSE点对点方式连接。
(3)10kV侧推荐采用常规互感器,不考虑母差保护、间隔间无配合情况,配置GOOSE单网,用于备自投、分段保护测控装置等相关配合。第二套主变保护动作信号由智能终端输出硬接点与备自投、分段保护测控装置之间采用电缆连接,不配置SV网、低压设备与测控相关以GOOSE报文通过站控层网络传输(MMS+GOOSE)。
2.2间隔层及过程层设备配置
(1)互感器配置:110kV线路、内桥采用三相电子式电流互感器:110kV母线采用三相电子式电压互感器;变压器高压侧中性点采用单相电子式电流互感器,低压侧采用三相电子式电流电压互感器;10kV母线采用三相常规电压互感器,各间隔采用三相常规电流互感器。
(2)合并单元配置:110kV线路、内桥及母线合并单元由于需要与双套变压器保护配合,因此需要双套配置、母线合并单元按每两段母线双套配置,每套合并单元含电压并列功能。合并单元具备GOOSE接口,通过内桥智能终端接收内桥断路器及刀闸位置。TA刀闸位置等信息用于电压并列逻辑判断;具备多个SV接口,通过点对点与间隔合并单元连接,输出母线电压;具备两个互感器检修压板。变压器高、低压侧中性点合并单元均采用双套配置,分别接人高压侧中性点互感器、低压侧ECVT。
(3)智能终端配置:110kV智能终端、变压器本体及各侧智能终端单套配置;两段母线单套配置一台智能终端;35(10)kV及以下电压等级采用户内开关柜,不配置智能终端,主变低压侧除外;对于采用常规互感器的间隔,宜采用合并单元与智能终端一体化装置。
(4)保护装置配置:线路间隔采用保护测控一体化装置,单套配置,包含完整的主后备保护功能;桥间隔采用保护测控一体化装置,单套配置;变压器电气量保护采用双套配置,每套含完整的主后备保护功能,接入110kV线路电流合并单元、110kV桥电流合并单元、110kV母线电压合并单元、高压侧中性点电流合并单元,非电量保护单套配置;低压各间隔采用测保一体化装置,单套配置。
(5)测控装置配置:每台主变、每段母线各配置一台测控装置。
2.3间隔间设备联系
(1)110kV线路技术方案如图1所示。每回线路配置单套完整的含主、后备保护及测控功能的线路保护测控装置,采用点对点方式通过第一套合并单元采集线路ECT电流、母线EVT电压;合并单元双套配置;智能终端单套配置,但应通过独立的网口分别与两套主变保护连接。
图1110kV线路技术方案
(2)110kV内桥及备自投技术方案如图2所示。内桥配置单套完整的含主、后备保护及测控功能的保护测控装置,采用点对点方式通过第一套合并单元采集内桥ECT电流;桥合并单元双套配置;智能终端单套配置,但应通过独立的网口分别与双套主变保护连接。内桥备自投装置通过SV网采集线路电流、母线电压等模拟量信息,通过GOOSE网采集线路、桥断路器位置信息及变压器第一套保护动作闭锁备自投信息;根据备自投装置安装位置,第二套变压器保护动作闭锁备自投信息可以通过变压器保护装置的GOOSE口点对点接至备自投装置,也可以由变压器高压侧智能终端输出硬接点接至备自投装置。
图2110kV内桥及备自投技术方案
(3)变压器电气量保护双套配置,每套含完整的主后备保护功能。第一套变压器保护接人以GOOSE及SV单网;非电量保护装置及本体智能终端单套配置、就地布置,采用直接电缆跳闸方式;非电量保护通过本体智能终端上送动作信息至以GOOSE网,用于测控及故障录波。
(4)低压备自投技术方案如图3所示。低压备自投接人SV及以GOOSE单网,通过SV网取得变压器低压侧及分段交流模拟量,通过以GOOSE网取得变压器后备保护闭锁信号及相应断路器位置并传递跳闸信号至相应断路器。为可靠闭锁,二套变压器后备保护闭锁信息均需接入备自投装置。考虑到低压备自投和变压器低压侧智能终端一般都安装在开关柜内,距离较近,推荐由变压器低压侧智能终端直接输出硬接点接入备自投装置,并通过电缆采集母线电压,跳分段断路器也采用电缆直接跳闸方式。
图3低压备自投技术方案
(5)低压间隔保护由于通常安装在开关柜内,与一次设备距离较近,因此采用常规电缆方式采集开关量和模拟量,输出硬接点至断路器机构跳闸。
(6)低压分段保护由于需要与变压器保护、低压备自投配合,因此需接人以GOOSE及SV网,第一、第二套变压器保护跳分段断路器分别通过以GOOSE网及变压器低压侧智能终端直接输出硬接点实现。
3结束语
总之,继电保护对变电站的安全稳定运行有着重要意义。作为继电保护工作者应不断求学、探索和进取,在技术成熟、可靠的基础上积极探索其它实现方式,真正发挥继电保护的效果,进一步提高了变电站运行的可靠性和安全性。
【参考文献】
在电力系统中,继电保护装置运行的可靠性对电力系统的整体运行具有重要的作用。如果电力系统中的继电保护装置的运行出现问题,容易导致电力系统发生故障,还会引起一系列的连锁反应,造成电力系统瘫痪,出现大面积的停电,给人们的正常生活与工作造成影响。由此可见继电保护装置运行的可靠性对电力系统运行的重要作用。本文首先对电力系统继电保护装置进行简单的描述,综合分析了影响继电保护装置运行可靠性的因素,并进一步对提高电力系统继电保护装置运行的可靠性提出合理的建议,为人们提高电力系统继电保护装置运行的可靠性提供参考。
【关键词】电力系统继电保护装置运行可靠性
继电保护装置是电力系统中最重要的组成部分,有效地保证了电力系统的正常运行。但与此同时,继电保护装置也容易出现一些问题,造成电力系统发生故障。随着用电需求量的不断增加,对继电保护装置的运行可靠性提出了新的要求和挑战。所以,提高电力系统继电保护装置运行的可靠性必须尽快得到有效地解决。
1电力系统继电保护装置概述
在电力系统中,继电保护装置的主要功能就是保护电路和电力基础元件,一般被安装在变电站或者断路器上,对电力系统的运行进行实时监测,并根据运行的状况和发生故障的类型控制断路器进行工作,保证电力系统的正常运行不受进一步影响。例如,在电力系统正常运行的过程中,一旦某一环节的电路或者基础元件出现故障,可能会对电力系统的整体运行造成影响,继电保护装置就能及时发挥作用,将故障信息反馈给控制器,通过跳闸的方式保护电力系统不受到故障的进一步影响,降低风险。但是,由于受到各种因素的影响,电力系统的正常运行还是会受到一定的影响,无法持续稳定地运行。所以,提高继电保护装置运行的可靠性势在必行。
2影响继电保护装置运行可靠性的因素
2.1继电保护装置硬件影响
继电保护装置的主要功能是实时监控电力系统的运行情况,保证电力系统安全稳定地运行。继电保护装置运行的可靠性与其自身的质量有很大的关系。部分生产厂家为了降低成本,获得更大的利益,在生产的过程中偷工减料,或者是使用廉价的生产材料,对产品的质量没有进行严格的把关,导致制造出质量不合格的继电保护装置,产品性能低下,降低了其运行的可靠性。
2.2电流互感器的影响
电流互感器是继电保护装置在电力系统中发挥作用的重要元件,对装置的运行可靠性具有重要的影响。当电流互感器出现饱和的情况时,会造成继电保护装置反应迟钝,甚至出现失灵的现象,降低了继电保护装置的运行可靠性,引起电力系统故障,出现大面积停电。当电流互感器出现误差,直接影响着继电保护装置对电力系统的保护质量,进一步降低了运行的可靠性。
2.3外部环境影响
继电保护装置是一种较为精密的仪器,很容易受到外部环境因素的影响。例如空气中存在着大量的粉尘和各种有害气体,会破坏继电保护装置的相关元件,而且有害馓寤够岣蚀继电保护装置的电路板,引起氧化反应,给装置的性能造成影响。同时,持续的高温也会加快继电保护装置的老化,降低其运行的可靠性。
2.4人为操作的影响
在电力系统中安装继电保护装置的过程中,相关工作人员的专业技能和水平对安装的质量具有重要的影响。如果不能严格按照继电保护装置的安装要求进行正确的线路连接以及相关操作,会给继电保护装置的正常运行造成严重的影响。同时,工作人员的责任意识和安全意识也十分重要,对继电保护装置的后期检查和维护也影响着继电保护装置运行的可靠性。例如,在检查出继电保护装置的电容储存有所减少,就需要对继电保护装置的电容装置进行更换,如果工作人员对电容装置的型号选择不当,就会对继电保护装置的运行可靠性造成影响。
3对提高继电保护装置运行可靠性的建议
3.1对继电保护装置的验收严格把关
继电保护装置对于电力系统的正常运行具有重要的保护作用,所以在正式运行前对继电保护装置的验收要进行严格地把关。对继电保护装置进行适当的试运行,进行全面系统的质检工作,并请相关专业人员对继电保护装置进行验收,这样能够有效地提高继电保护装置的安全性和运行可靠性。在对继电保护装置进行一系列的试运行、质检以及专业验收以后,填写完整的验收单据,并交由相关部门批准,组织相关部门工作人员进行继电保护装置的保护以及断电功能的实验,确认其安全性和正常运行的可靠性,并对验收以及实验过程中拆动的元件和接线等恢复原位,保持待运行状态。同时,在对继电保护装置的出厂设置进行更改时,要仔细核对需要更改的数据和相关事项,将更改的内容与时间登记在册,以便后期检查与维护使用。确保继电保护装置一切正常,并经相关部门批准后再投入正常使用。
3.2提高继电保护装置的智能化程度
智能化技术是具有划时代意义的新发明,已经被广泛地应用于各行各业中。在电力系统中,智能化技术早已有所应用。例如,已经被人们广泛应用于电力系统中的模糊逻辑和遗传算法等先进技术。随着智能化技术的不断发展和完善,其智能化技术和理念日趋成熟,也使得继电保护装置的运行可靠性得到了明显的提高。在电力系统中,应用智能化技术能够取得明显的优势,不仅明显地提高了继电保护装置运行的可靠性,而且还能够通过控制继电保护装置连续运行的时间,提高继电保护装置的使用寿命。智能化技术还能够对影响继电保护装置运行可靠性的不利因素进行及时有效的处理,从根本上排除或降低对继电保护装置运行可靠性的不利影响,从而提高其运行可靠性,更好地发挥保护电力系统的功能。
3.3提高工作人员的专业技能水平
提高继电保护装置运行的可靠性应该将工作重心转向以提高供电的可靠性为主,完善供电可靠性的相关规章制度和管理规范,建立科学合理的管理体系。继电保护装置相关的工作人员整体素质不达标,专业技能水平不足,是造成继电保护装置运行可靠性不稳定的主要原因之一。针对这种情况,就要加强对相关工作人员的专业技能培训和素质教育,培养员工形成良好安全意识和责任意识,切实提高工作人员对继电保护装置的故障处理能力和效率,并使工作人员养成定期检查继电保护装置并进行相关工作记录的好习惯,降低继电保护装置发生故障的可能性,进一步提高发继电保护装置运行的可靠性。
3.4加强继电保护装置技术创新
随着科学技术的不断发展与进步,各种信息化、智能化技术水平不断提高,给各行各业都带来了良好的发展机遇。电力系统也在科学技术的推动下不断发展与完善,所以,继电保护装置也应该加强技术创新,全面提高继电保护装置的性能和工作效率,以便适应发展日益迅速的电力系统。首先,要根据继电保护装置在电力系统中的功能特性,通过创新技术,不断完善和提高继电保护装置运行的可靠性,增强对电力系统的保护力度;其次,积极引进先进的技术,丰富继电保护装置的功能,如增加故障检测、自动恢复供电等功能,提高继电保护装置的利用率;同时,要不断改进继电保护装置的硬件结构,采用体积小、性能强、功耗低以及具有环保性的材料,提高继电保护装置的实用性;最后,要不断提高继电保护装置运行的可靠性,使其能够更好地发挥应有的作用。
4结束语
继电保护装置在电力系y中扮演着安全卫士的角色,提高其运行的可靠性是电力系统正常运行的重要保障。电力系统相关工作人员一定要正确认识继电保护装置在电力系统中的重要性,并充分了解影响继电保护装置运行可靠性的不利因素,提高自身的专业技能水平,不断进行技术创新,切实提高继电保护装置运行的可靠性,使其能够更好的保证电力系统正常运行。
参考文献
[1]曾克娥.电力系统继电保护装置运行可靠性探讨[J].电网技术,2014,14:83-85.
[2]劳海军.电力系统继电保护装置运行可靠性探讨[J].中小企业管理与科技(上旬刊),2015,02:312.
[3]尚鹏,刘锦英,赵莹莹,高金路.电力系统继电保护装置运行可靠性探讨[J].科技创业家,2013,22:87.
[4]陈增贤.电力系统继电保护装置运行可靠性的探讨和研究[J].硅谷,2014,22:46+97.
[5]姬楠,高品.电力系统继电保护装置运行可靠性探讨[J].企业改革与管理,2015,10:207.
[6]崔玉华.电力继电保护运行及可靠性分析[J].山东工业技术,2015,17:119.
[7]韩天行,梁志成,胥岱遐.电力系统继电保护及自动化装置的可靠性试验及评估的研究[J].江苏电器,2014,02:49-54.
[8]孙毅.有关电力系统继电保护运行可靠性实践探讨[J].黑龙江科技信息,2014,29:149.
作者简介
刘清平,女,湖北省恩施市人。硕士研究生学历。现为江西电力职业技术学院讲师。研究方向为继电保护技术与自动化技术
邹清源,男,湖北省恩施市人。硕士研究生学历。现为江西电力职业技术学院讲师。研究方向为电力电子技术
王美英,女,山东省郓城县人。现为江西电力职业技术学院讲师。研究方向为机械电子
关键词:电力系统,自动化继电保护装置
中图分类号:F407文献标识码:A
电力自动化系统的发展在很大程度上受继电保护装置技术的制约[1],因而加快继电保护装置技术的发展是十分迫切和必要的,然而继电保护装置的发展离不开测试技术的进步。继电保护测试就是进行继电保护试验和测量继电保护的特性参数[2],在保证电力系统安全可靠运行方面起着重要作用。本文针对继电保护测试技术的发展,介绍了继电保护测试装置的基本原理,并研究分析了自动化继电保护装置的测试技术特点。
1.继电保护测试装置的类型和发展阶段
1.1继电保护测试装置的类型[3]
第一种类型由功能强大的仿真软件包和先进的实时数字仿真器件组成,主要模拟电力系统的电磁暂态过程。其特点是硬件结构复杂,电力系统元件模型库较齐全,应用面广,但价格昂贵。比较典型的有法国DTNA数字暂态网络分析仪、西门子NETOMA电力系统仿真软件包等。
第二种类型是针对某一类专门用途而设计的测试系统,具有结构简单,便于携带,价格较便宜的特点。
1.2继电保护测试装置的发展阶段[2,3,4]
第一代微机型继电保护试验仪,以单片机为智能控制器,计算速度较慢,精度较差。
第二代微机型继电保护试验仪,以PC机(笔记本电脑)做为智能控制器,采用DOS操作系统,具有较强的计算功能,精度能达到0.5级。
第三代微机型继电保护试验仪,以PC机和串口为硬件基础;软件采用Windows界面,界面友好;功能模块化,具有可扩展电压、电流插件,能实现连续变频。
第四代微机型继电保护试验仪,充分利用网络技术和数据库技术,具有良好的技术支持、方便的用户服务及灵活的硬件扩展特点;性能高、精度高,能实现实时仿真,可自动生成试验报告,具有辅助专家功能等。
2.继电保护测试装置的基本原理[3,4]
继电保护测试装置一般由主机、计算机及辅助设备组成。
主机将标准的电流、电压信号经过内部处理转化成所设定测试条件下的电流、电压信号,加载到被试验的继电保护装置上,检测其逻辑功能和动作特性,并且根据国际、国家标准对测试结果进行标定和评价。
继电保护测试装置的试验方式分手动和自动试验两种。手动试验可以通过主机上的手动控制开关,使变量按设置的步长进行增减,也可以通过计算机上的鼠标和键盘上的功能键来完成变量的递增或递减。自动试验是通过计算机的软件,将试验项目全部试验过程中所有参数变化的要求进行编程,自动完成产品的试验。
3.自动化继电保护装置测试技术的研究分析
3.1数字化继电保护装置与传统继电保护装置的差别[5,6]
随着IEC61850规约的推广和智能电气设备的发展,电气系统自动化继电保护技术进入了新的数字化阶段。符合IEC61850标准的数字化保护装置与传统的继电保护装置在结构上有着相当大的差别,其差别体现在以下几个方面:
1.硬件差别。传统保护由模拟量输入接口单元、开关量输入输出接口、数据处理单元、人机接口、通信接口等组成。采用IEC61850标准的保护则由光接口单元、中央处理单元、开入开出单元、人机接口和通信接口等组成。
2.产品检测方式的不同。⑴装置测量准确度方面。传统方式通过PT/CT交流采样,而IEC61850的方式是接收过程层送来的数字信号――光PT/CT或者电子式PT/CT。⑵SOE分辨率试验。传统方式的考核对象是继电保护装置。IEC61850方式的考核对象是过程层数字模块。
3.时间同步性。IEC61850要求测试系统的各个单体光数字转换装置、数字保护设备等之间信号的传输必须满足同步性要求。传统模式没有要求一定同步。
4.实时性要求。IEC61850要求闭环仿真测试系统各个环节满足实时性要求。传统模式没有这种要求。
由于IEC61850标准的数字化保护装置与传统的继电保护装置在结构上的巨大差别,传统的测试技术不能用于IEC61850标准的数字化保护装置。
3.2数字化继电保护测试系统的搭建方法[6,7]
数字化继电保护对测试系统的基本要求有3点:⑴能够输出基于IEC61850-9标准的采样值报文,并且能够模拟电力系统的各种故障,故障参数可以设置;⑵能够发送GOOSE报文给被测装置,模拟变电位置信息、闭锁信号等各种开入量信息;⑶能够接收被测装置发送的GOOSE报文并正确解析,给出GOOSE报文携带的信息。
在数字化继电保护测试系统中必须有光速据转化装置(合并装置)将模拟信号转化为GOOSE报文传送给被测继电保护装置,同时接收被测继电保护装置发出的GOOSE动作信号并解析为开关模拟量信号.并反馈至继电保护测试仪,以此形成数字继电保护装置的闭环测试系统。
3.3统一建模的继电保护测试装置[8-10]
电力系统日趋复杂化和智能化,微机型智能继电保护测控装置的种类也日趋多样化。在这种情况下需要提供统一的整机自动测试平台。
统一建模的系统要求:⑴测试仪必须具有全自动,全闭环校验的能力;⑵测试仪本身需要具有数据通讯的能力,可以接收命令和执行命令,并接受上位机的控制。
用一台主机同时控制多台测试仪一起工作。每一台测试仪调试一台保护装置,测试结束后,各台测试仪通过数据通信,将测试结果上送到主机,形成历史文档。如果和保护测控装置的条形码识别系统结合,其历史记录将更加完整。采用这样的调试方式,可以最大限度的减少调试人员的工作量,实现对大批量测试对象的测试。中央控制PC机在开始调试之前对每台测试仪进行单独的远程配置,并将测试方案导入到相应的测试仪中,设置测试标准;在调试过程中,对多台测试仪的调试过程进行集中监控管理;调试结束后,对每台被测试仪完成调试报告并且存入数据库。所以,在整机调试线上,只要有一位管理员控制中央控制PC机,即可同时对多台装置进行全自动调试。
开发这样的系统主要在于开发继电保护测试装置各类I/O接口插件和整机测试模型组态软件。基于数字化继电保护装置的硬件架构实现这样的系统并不困难,关键是整机测试模型组态软件的开发。
软件系统可以使用三层体系结构:⑴界面层。界面层上按照用户使用的位置不同分为远程界面部分和现场界面部分,分别对应于远程工作站和现场控制上位机。⑵逻辑层。逻辑层中包含了所有本系统的核心模块,每个模块都是按面向对象的程序设计思想对其功能进行封装,被上层的界面层的操作来调用,其结果返回给界面或是存入数据库中。⑶数据层。数据层即数据库存储部分,可以用系统自带的单机型数据库,也可使用联机数据库。
4.结论
自动化继电保护装置在电网中的应用越来越普遍,对该装置的安装校验和定期检验日益成为一项繁重的工作,研究和采用新的适应当前和今后继电保护装置的测试系统的方法十分重要,也具有很好的现实意义。
参考文献:
[1]姚晓松.对电力系统继电保护自动化发展的论述[J].大科技:科技天地,2011(12).
[2]王大鹏.电力系统继电保护测试技术[M].北京:中国电力出版社,2006.
[3]孔林.基于双工控机的微机继电保护测试仪研究与实现[D].武汉:华中科技大学,2009.
[4]杨利水.继电保护及自动装置检验与调试[M].北京:中国电力出版社,2008.
[5]姚致清.继电保护测试发展方向的思考[J].继电器,2008,36(11).
[6]李先妹等.数字化变电站继电保护测试技术的分析研究[J].电力系统保护与控制,2012,40(3).
[7]李晓朋等.基于IEC61850的数字化继电保护GOOSE功能测试[J].继电器,2008,36(7).
[8]王治国等.基于统一建模的继电保护测试装置开发研究[J].电力系统保护与控制,2010,38(19).