首页 > 范文大全 > 计划安排

地震勘探技术范例(12篇)

发布人:转载 发布时间:2024-03-13

地震勘探技术范文篇1

本文对我国煤炭矿井主要地质勘探技术井巷二维地震勘探、高密度电阻率法、震波超前探测、槽波勘探法、地质雷达勘探方法进行了详细介绍,并对勘探技术发展方向进行展望。

关键词:

煤矿开采;巷探工程;地质雷达法;槽波地震法;地震勘探

煤炭在我国能源结构中占有重要比例,对我国经济发展意义重大。在煤矿生产中,运用地质勘探技术查明各种地质问题,对煤矿的安全高效生产具有重要意义。

1煤矿地质勘查技术

1.1巷探工程

利用矿井中的巷道来探测断裂构造、陷落柱等地质异常现象称为巷探。巷探在矿井地质工作中应用广泛。如图1,为了探测断层F1的位置和走向,向断层F1掘进探巷a、b、c。

1.2地球物理勘探技术

地球物理勘探指利用岩层密度、传播速度、弹性波、电性等物理性质的不同,进行地质勘查的一种技术方法。井巷二维地震勘探、震波超前探测、槽波勘探法、地质雷达勘探方法、高密度电阻率法和坑透法是目前最常用的物探技术。

1.2.1二维地震勘探

地震勘探是利用地下介质弹性和密度的不同,对人工激发地震波的响应进行观测、记录和分析,推测地下岩层的形态和性质的一种物探方法。通过沿测线布置炮点和检波点,对地震数据进行采集、解释和处理。

1.2.2震波超前探测

煤矿震波超前探测也是一种地震勘探技术,由于煤矿井下空间条件的限制,可供观测利用的空间十分有限,为充分利用井下空间,震波超前探测技术主要采用反射地震方法。即在巷道内尽可能多布置激发装置和接收装置,采集大量的地震波数据,以提高探测效果,更好地为煤矿生产服务。

1.2.3槽波勘探法

槽波地震勘探是煤矿探测断裂构造、陷落柱等地质异常体的常用方法。原理是利用地震波在不同密度介质中传播速度的差异,在密度大的介质中传播速度大于密度低的介质中传播速度。岩石密度大于煤层,因此地震波在岩层中传播速度大于煤层中传播速度。所以,在煤层中的地震波将有一部分在煤层底板与顶板接触面上发生全反射,形成一个沿煤层传播的槽波(导波或煤层波)。槽波在介质接触面会发生透射和反射,当槽波的变化被仪器探测到时,即可确定接触面的位置和大小。槽波地震勘探有透射波法与反射波法两种,透射波法分别在两条巷道中激发和接收槽波,根据槽波的变化,确定地质构造体是否存在,如图2。反射法在一条巷道中布置激发点与接收槽波,根据槽波反射信号,确定地质构造置,如图3。

1.2.4地质雷达勘探方法

地质雷达勘探是利用地层电性参数的不同,应用高频电磁脉冲波的反射作用,探测目标地层和地质现象的一种勘探方法。原理为利用雷达接收在不同地质界面上反射的电磁波,并根据反射电磁波的特征,对异常地质体探测和识别。对井下岩浆侵入体、断层、老窑和陷落柱等的探测具有良好的效果。在山西、河南、山东、安徽等地矿井应用广泛。

1.2.5高密度电阻率法

电阻率法指利用岩土的导电性,通过观测地层中电流场的分布规律,来分析地层中地质现象的一种地质勘探方法。高密度电阻率法是在煤矿勘探中应用的一种新的技术方法。

1.2.6坑透法

坑透法指应用发射器向地质异常体发射高频率无线电波,并监测电磁波在传播过程中的强弱情况,以确定地质异常体的位置和范围的一种勘探方法。其原理为不同电性岩层对电磁波能量吸收作用具有差异性,电阻率高的岩层对电磁波吸收作用强,电阻率低的岩层对电磁波能量吸收作用弱。同时,电磁波在地层断裂面会发生反射、折射和散射,电磁波能量也会减弱,一些地质异常体(如导水断层)也吸收电磁波。因此,可设计电磁波的发射点和接收点,电磁波通过地质异常体时,接收点无线电波明显减弱,设计多个发射点和接收点位置对地质异常体多次观测,即可确定其范围。

2煤矿开采地质勘探技术的发展方向

煤矿地质勘查是一项复杂的工作,除了传统钻探工程、巷探工程、地质雷达勘探和坑透法等勘探技术外,还应该发展地质勘查新技术,如三维地震、瞬变电磁等,综合利用多种地质勘查技术。并且将地质勘探技术与地理信息系统相结合,建立多元煤矿信息集成系统,实现地质资料的信息化、数字化和可视化,实现对煤矿地质条件的精准评价、生产地质工作高效管理和突发性煤矿地质灾害的有效防治。

3结论

我国煤矿地质条件复杂,煤层褶皱、断层等地质构造发育对煤矿的安全生产造成严重影响,易引发煤矿生产事故。对于煤矿生产中遇到的各种地质问题,不但需要采用传统的地质勘探技术,还要发展新技术,对各种地质因素进行动态分析,综合应用多种勘探技术手段,为煤矿的安全高效生产提供地质预测预报保障。

参考文献:

[1]闵康.对煤矿地质勘探技术及地质环境综合治理的研究[J].内蒙古煤炭经济,2014,(7):11-12.

[2]王远德.煤矿地质勘探技术及其重要性研究[J].技术与市场,2016,23(9):101-102.

[3]岳嵩.浅谈煤矿地质勘探技术及其重要性[J].河南科技,2014,(8):44.

[4]徐文科.浅议煤矿地质勘探技术及其重要性[J].华东科技(学术版),2014,(8):402.

[5]陈晓雷.浅谈煤矿地质勘探技术及其重要性[J].科技信息,2009,(15):329.

地震勘探技术范文篇2

[关键词]:三维地震勘探资料处理应用

0.引言

三维地震勘探技术在煤田上的应用经过近二十年的发展,在东部平原取得了显著的地质效果,但随着近几年的开采,煤炭资源越来越少,而中西部地区的煤炭资源占全国煤炭资源总量的2/3,资源勘探的重点已转向西部地区[1]。

由于西部地区第四系黄土层对地震波的吸收衰减比较强烈,且往往地形复杂,给地震勘探造成一定困难。随着三维地震勘探技术在西部黄土塬区的应用,针对黄土塬区三维地震勘探处理技术的应用,对于提高勘探质量为煤矿安全生产提供保障有着深远的影响。

1.项目概况

陕西某煤矿位于陕西省白水县,由于原有勘探程度远远不能满足采区设计和工作面划分的要求。煤矿决定对采区进行三维地震勘探,以为下一步的巷道布置和安全生产提供保障。由于勘探区内黄土层较厚,不利于地震波的传播,且黄土冲沟也发育,地表高差达200m,地形十分复杂;塬上及半坡密布大量的苹果园,测量通视相当困难,这给地震的采集造成较大的影响。

2.数据采集

(1)黄土覆盖区段。巨厚黄土对地震波的吸收衰减极为强烈;区内潜水面很深,低速带调查结果表明,黄土层速度极低,其与基岩面可形成良好的波阻抗界面。因此塬上施工时该界面能产生折射、强反射及层间多次波,对目的层反射波形成严重干扰,该区域是本区激发条件较差的地区。

(2)坡积地段。坡积物成份复杂、堆积松散、成孔难、激发难,高差变化剧烈,是本区最难获得资料地区。

(3)从原始资料上看,主要目的层反射波信噪比差异很大,勘探区南部边缘及勘探区西北部资料相对较差。

总的来说,经过野外的努力,对黄土覆盖区来说获得了较好的效果,资料有较大一部分主要目的层的信噪比很高,为完成勘探任务奠定了基础。

3.资料处理的主要技术措施

针对原始资料以上的特点,制定了本次资料处理的指导思想:在“三高”处理过程中,以保幅处理为重心,重点提高资料的信噪比。突出目的层,兼顾浅、中、深层。

(1)静校正

静校正是地震资料处理中的关键环节之一。由于地表高程及地表低(降)速带厚度、速度存在横向变化,使得由此产生的地震波旅行时差会对信号的叠加效果产生一定的不利影响,致使反射波同相轴信噪比下降、频率降低。

结合本区实际情况,确定了野外静校正,初至折射静校正、自动剩余静校正逐步细化的静校正应用方法。在此补充说明的一点是在绿山初至折射静校正的逐炮拾取阶段,务求所拾取的初至折射波来自于在全区较能连续追踪的同一层,以建立精确的近地表模型。

在准确求取了绿山所得静校正量后,分离长波长分量及短波长分量,应用短波长分量,解决邻道间的剧烈跳跃现象。在此基础上多次求取剩余静校正量。求自动剩余静校正量时,应在全区找一个较好的标志层,使其达到效果理想而且保真。图1是静校正前后单炮对比。

(2)振幅处理

振幅处理包括:

a.补偿地震波的地层吸收;

b.结合地层,选定速度进行球面扩散补偿;

c.对地表一致性振幅分解,求出振幅补偿因子,对地震数据进行消除由于激发、接收等因素引起的振幅能量差异进行一致性校正;

d.动态振幅均衡。

对振幅的上述处理,完全消除了由于地表剧烈变化,地层吸收等因素对振幅产生差异。使振幅变化真正反映地层物性参数的差异。

(3)干扰波消除

a.迭前滤波:15~25、140~160消除低频及高频干扰。

b.剔除坏道,不正常道,尖脉冲等。

c.初至干扰波及声波的切除。

(4)地表一致性处理

在地表一致性振幅补偿的基础上,选用地表一致性预测反褶积。完成在炮域,接收点域、共偏移距域的地表一致性预测,同时压缩子波,提高分辨率及信噪比。

(5)速度分析

由于静校正部分地段信噪比极低的影响,使速度分析很难一次到位,针对本区采取如下措施。

a.先采用常速度叠加,拾取较好段的速度值作为初始速度。

b.在二次剩余静校正之后做速度分析。

c.采用大道集进行速度分析。

d.在构造复杂处加密速度控制点。

(6)DMO叠加

针对本区的实际资料,采用DMO叠加,依据为:

a.水射和倾斜反射同相轴在DMO叠加过程中均能同时正确成像。

b.DMO技术改善了叠加速度对地层倾角的依赖,提高了速度分析精度,并为准确求取偏移成像速度场提供基础条件。

c.DMO本身是一种多道运算的部分偏移过程,在此过程,随机噪音得到了压制,提高了资料信噪比。

(7)叠后去噪

采用多项式拟合衰减随机噪声,利用一次波减去法削除中、深层的多次波。图2、图3为去噪前后叠加剖面对比图。

(8)偏移

采用15°有限差分法进行偏移,处理过程中对偏移速度进行充分试验。依据实验,对偏移速度采用时空变系数,使各地段达到最佳偏移效果。是图4为偏移后的时间剖面。

(9)提高频率

处理中对谱白化反谱积,反Q滤波、分频处理,脉冲褶积,迭后子波反褶积等提频方法加以综合利用,反复试验,在不过多损害信噪比的情况下尽量提高频率。

(10)特殊处理

为了能更加准确地反映地下真实情况,突出小构造,采用了如下特殊处理方法:

a.地震道积分

b.递推式波阻抗反演

c.三瞬处理

d.多道约束地层反演

4.结论

针对黄土塬区复杂的地表地质条件,在野外采集完数据后,在三维地震勘探资料处理环节采用多项处理技术和流程,取得了较好的效果。

参考文献:

地震勘探技术范文1篇3

关键词:石油勘探;技术;发展;趋势;展望

0引言

随着经济全球化的发展,石油工业也面临着严峻的形势,这些情况决定了石油技术的发展方向,在新世纪的发展过程中石油工业主要的发展障碍有很多方面,其中主要的几个方面有:市场竞争加剧、勘探开发程度要求越来越高、能源需求越来越大、对于绿色环保也提出了更高的要求,这些挑战对石油技术的发展提出了发展要求,要尽可能的开发储量、提高产能和开发率、保持绿色的开发和运输、降低成本、提高效率和效益,这些特点就决定了油气勘探开发的趋势技术变革一定会越来越快,学科之间的交叉和渗透越来越深入,技术方法的综合应用更普遍,生物技术、纳米技术、自动技术以及信息技术的应用会更多的推广到石油勘探工作当中,这些改变将会对石油勘探行业产生巨大而深远的影响。

1石油勘探技术发展方向

随着油气勘探开发技术的不断发展和领域的不断扩大,石油勘探工作逐渐有所变革,在石油勘探工作当中物探技术的基本发展趋势就是高密度三维采集、大数据处理解释及重磁电震综合研究,包括百万道地震数据采集系统、超高密度数据采集与处理技术、波动方程研究、全波形反演、浅水、陆上、深层CSEM、三维井眼地震、地震数据与其他数据综合解释、开发自动地震搜索引擎等技术等。以下进行相关解释。

1.1综合配套技术的发展随着勘探开发的不断进行和开发技术的不断完善,在油气资源开发过程中开发难度将越来越大,油气开发剩余资源的自然地理位置将越来越严峻,中东以外的各个国家的油气位置都相当不利,多处在沙漠、高山、深海等地区,另外在石油开发进行到一定程度之后剩余的油藏类型将更为复杂,油田规模越来越小,油田品质有所降低,这就对勘探开发提出了更高的要求,需要勘探技术的快速发展,综合运用多种技术和方法进行勘探,降低成本消耗将是未来的主要发展需求和趋势。例如复杂的碳酸岩勘探配套技术的适用,尤其是对于高风险、高寒地区更为适用,另外对于深海盆地等也有相应的配套技术,随着勘探地区的需求,特色配套技术的发展也会随着地区特点不断地进行。从而提高开发效率和开发安全性。

1.2地球物理勘探技术地球物理技术作为一项勘探主要技术将会不断地发展和完善,在经历了数字时代和三维地震的应用之后,地球物理勘探技术仍将不断地发展,注入新的活力适应油藏形势,对物探特别是地震资料的信噪比、分辨率及构造成像精度提出了更高的要求,物探技术随着油田勘探内容的不断变化也会不断成长,未来物探技术仍将保持主导地位,扮演重要角色。

1.3全波形反演技术全波形反演技术方法是对地震波场的运动学和动力学信息有效利用,从而对地下结构进行重建,能够清晰地揭示复杂地质环境下的构造以及岩性细节信息,并且随着油气开发的难度越来越大,全波形反演技术也在不断的完善和发展,从成像效果以及速度模型上都有所完善,能够深度分析区域深部构造,详细进行成像演化分析,对地表环境进行有效的勘探调查,监理宏观速度场模,从而提供有力的数据支持,为油气的开发奠定基础。但是这种方式还是存在一定的缺陷,例如算法不稳定,计算量太大,在实际应用中不能很好的为油气开发服务,计算机技术的快速发展为全波形反演技术提供了技术基础,如何利用大偏移数据对内部成像进行改善,如何利用低频数据进行全波形反演、如何进行弹性波和全波形反演,如何去掉全波形反演中的多次波和绕射波,以及对于全波形反演的一阶近似如何快速收敛等方面。随着计算机计算能力的不断提高,这一技术应用将会不断拓展。

1.4微地震监测技术在地球物理勘测技术当中,地震监测是一项非常有效的监测方式,所谓的地震监测就是通过在生产活动中的地震事件进行监测和分析,从而得出大量的数据来推测地下状态以及效果,微地震监测分为井中监测以及地面监测两种方式,其中井中监测就是目前非常规勘探领域主要的地球物理技术之一。在监测目标区域周围临近的井中进行布置和接收的排列即为地震监测技术,井的布置和排列要根据具体的情况进行设定,与井中监测不同的是,地面监测由于精度较低、信噪比低等问题不如井中监测的可靠性和反演性好。

1.5天然气技术的取代在资源的开发工作当中,石油作为不可再生资源不会取之不尽,终有枯竭的一天,这就对能源的应用造成了限制,需要我们不断地开发各种新能源作为代替,其中应用较为普遍的即为天然气。天然气的不断发展实现了部分替代的功能,另外一些非常规油气资源的勘探工作也将会是未来几年的发展方向,在非常规油气资源的勘探中将会投入更多的研究和试验,从而促进替代能源的发展。

2石油勘探技术信息化发展

近年来,高性能计算系统成为推动石油地震探测技术的最主要动力,lCPU技术的进步、微处理器技术的进步大大提高了由此构造的计算节点和I/O的计算性能和高速网络技术的进步。高速网络使得松散耦合系统之间的通讯带宽大幅度提高,带有处理能力的网络接口和新的通讯机制有效地降低了通讯开销,提高了并行效率和并行程序系统。多种可移植并行程序编程环境进入实用阶段,已经出现Omega等多种成熟应用系统。

高性能计算能赋予用户前所未有的计算能力。作为高性能计算的重要组成部分:高性能网络平台的建设无疑是重中之重,数据的传输能力则受到带宽和时延的限制,作为核心连接设备的交换设备又是其重要影响因素。对于高性能网络建设和石油通信行业有很大的推动作用,并能够通过高性能交换机不断地推出引领市场并灵活满足行业应用的高性能交换设备。

3结语

综上所述,石油勘探技术的不断发展需要依托于自然科学的进步、信息技术的进步等,这就需要在石油勘探的发展中要不断地综合各项科学进行有机的融合,实现石油勘探技术的全面发展,提高石油勘探技术的层次化、科学化和智能化,有效的保障能源的供应。

参考文献:

[1]刘德祥,韩金有.石油勘探技术的发展前景展望[J].化工管理,2014(35):119-119.

地震勘探技术范文篇4

[关键字]:三维地震煤田勘测

1.引言

中国煤矿采区地震勘探技术历经将近50年的发展,出现了三次重大的技术飞跃,现已成为煤矿高效安全开采前构造勘探的首选技术,回顾煤矿采区地震勘探技术的发展历程,预计三维多波地震勘探技术的发展成熟,有望成为煤矿采区地震勘探技术的第四次技术飞跃,这还有待于在现有三维地震勘探技术不断发展完善的基础上,以期早日得到实质性的突破。

2.三维地震勘测的原理

2.1三维地震勘测原理

三维地震采是用高密度的、各种形式的面积观测系统,所以三维地震又叫面积勘探法。它是在二维地震勘测技术上发展而来的。与二维地震勘测相比,三维地震勘测获得的信息量非常丰富,且地震剖面分辨率高。

2.1.1面积测量系统反射波时距

根据物理地震学的原理,地震波从炮点激发后,将会以球面波的形式向下继续传播。根据惠更斯原理,波遇到反射界面后,可以把反射界面上每一点看做是一个新震源,每个质点都激发球面波向前传播。对地面某个接收点S来说,它所接受的反射波,就是一系列来自反射界面的波的总和。

2.1.2折曲测线观测系统反射波时距

有的地区由于地表条件限制,为了完成地震勘探任务,往往把测线布置成折曲测

线、波状测线及环行测线。这类测线的基础是弯曲测线,时距方程为:

(2.1)

式中,V:介质速度;H:反射界面埋藏深度;:地震波垂直反射时间;l:炮检距。若已知激发点和接收点S的平面坐标,则

(2.2)

(2.3)

其中,表示激发点O的坐标,表示接受点的坐标。可以看出,弯曲测线反射波时距曲线是一条与激发点和接收点的平面坐标有关的、复杂的空间曲线。但是,不管曲线多么复杂,只要能用数学公式模拟,就可通过解方程的方法把反射界面确定下来。

2.2观测系统设计原理

三维观测系统主要有两大类:线束状观测系统和面积观测系统。

面积观测系统:接收点以网格形式全区密集采样分布,炮点是以较稀疏网格分布,或以相反的形式分布,它完全满足3D对称采样的观测系统,但缺点是费用太高,在实际生产中无法实现。线束型观测系统:接收点以一定采样间隔以一条或多条平行线的方式分布,激发点沿着炮线分布的观测系统。

2.3叠加原理

2.3.1水平叠加剖面

在用多次覆盖的方法采集得到的地震资料处理过程中,把共同反射点的许多道的记录经动校正并叠加起来,以提高讯噪比,压制干扰。用这种方法处理所得到的地震剖面叫水平叠加剖面。

水平叠加剖面是地震构造解释的主要是时间剖面,同时又是地震地层解释中应用最广的资料。

2.3.2倾斜界面偏移归位的基本原理

首先,如图1所示,自激自收得到的反射信息对应的反射点位置可能来自以1/2Vt为半径,以自激自收点O为圆心的圆弧上的任一点。

根据上图可知,如果只有一道自激自收记录,而没有其它的资料来配合,那么就无法确定反射点在地下的准确位置。事实上,可以用反向射线追踪的方法来确定反射界面的位置。

3.总结

三维地震勘探是当今地震勘探的新领域和新技术,从设计、采集、处理到解释,都需要认真地分析研究各个阶段的主要矛盾,以科学、严谨的态度、务实的工作方法、保质保量地完成勘探地质任务才会取得好的地质效果。

参考文献

[1]胡建强.市区内不规则三维地震勘探[J].勘探家,1999,3(1):24~26.

地震勘探技术范文1篇5

一、石油地质资源及勘探技术的现状

石油作为一种化石能源,宝贵的不可再生能源,是国家的基础能源与国民经济发展相辅相成,但随着经济的发展,社会需求量的增大。我国的石油资源可采储量相对较少,优质的石油更是少之又少,这就严重的制约了社会的进步和经济的发展。当然,这样的现状同样给石油地质勘探工作带来了很大的压力。现阶段,我国石油的地质勘探技术主要包括三种:物探技术、钻井技术和测井技术。虽然,近几年来,我国不断的对石油地质勘探技术进行研究和创新,但石油地质勘探技术依旧不够完善,仍满足不了社会发展的需求,石油地质勘探技术仍需要创新。就目前国家的发展情况来看,未来对于石油的需求只能会是增加而不会是减少。据专家预测,预计到2022年,我国对于石油的需求量就将达到3.8亿t,如果在这之前相关的科研人员没有发现大量的油气资源,那么就会造成资源的严重的缺口,这样对于国家的国民经济发展和社会稳定是十分不利的。但就现在我国石油地质资源来看,对石油地质勘探工作的改革创新是必须要进行的。要在创新和改革中有所突破,全面提高对石油的开采,缓解我国石油地质勘探工作的问题。。

二、石油地质资源勘探技术的改革、创新、发展

1.石油地质资源勘探技术―物探技术

传统的物探技术是地震勘探技术,这种技术可以在需要勘探的地区人工的制造一个地震波,如果探测器接收到反馈地震波携带有可表征地下地质特性的相关信息,然后相关工作然元对这些信息进行处理和分析汇总,就可以确认被探测区域是否存在油气资源,之后为进一步提升物探精准度,反射地震技术、数字地震技术以及三维地震技术等性能更稳定、参数更精确的物探技术被应用到物探领域中。之后,随着现代信息化的发展,集成度和精准度更高更准确的高分辨率地震物探技术、三维叠前深度偏移技术、油藏地震描述技术以及思维地震检测技术等一系列技术出现,进一步的提升了物探技术的精准度,而且加入了计算机的应用,大大的减低了物探设备的生产和应用成本,更好的推动了物探技术自动化和智能化的发展。

2.石油地质资源勘探技术―测井技术

测井技术作为勘探与开发油气田的重要方法技术之一,距离当今已有近80年的历史。随着科技的进步与发展,测井技术在油气勘探、开发、生产等全过程中发挥着很大的作用,为石油事业带来了很高的经济效益。测井技术在油气勘探与开发中占有着很重要的地位,是为石油地质勘探工作提供很好技术支持的专业性技术。随着数字信息采集设备、传感设备以及成像设备在石油地质资源勘探技术的应用,测井相关设备就可以直接进行成像并传输更多的数据信息。更突出的是,多个探测器和下井仪器可以直接组合使用了,可以更精准、全面的将井下的信息反馈给相关工作人员。这不仅提高了精准度也省去了很多工作人员的时间。之后,相继的核磁共振测井技术、套管井测井技术、随钻测井技术、快速平台。测井等相关技术的出现,更加推动了石油地质资源勘探技术的发展和创新。

3.石油地质资源勘探技术―钻井技术

地震勘探技术范文篇6

【关键词】三分量地震勘探技术地震仪器数字三分量检波器MEMS动态范围

中图分类号:G4文献标识码:A文章编号:1009-914X(2013)35-255-01

引言

地震数据采集是地震勘探工作的重要环节,采集资料的好坏直接影响勘探成果。三分量数字检波器技术是最新型全数字地震数据采集系统的关键技术,因此开展数字三分量地震勘探技术研究及其在海拉尔油田的应用,一是探讨利用数字检波器采集的三分量地震资料能否进一步提高海拉尔凹陷油层分辨率的潜力;二是探索利用数字检波器采集的三分量地震资料识别地质构造的潜力,提高储层岩性识别以及含油气储层预测的精度;三是要形成一套细致详实的数字三分量地震资料采集、处理、解释方法并制定相应的技术流程,同时,为大庆、海拉尔探区及其它地区油气勘探开发进行技术准备。

数字三分量检波器基本原理

三分量数字检波器由三个部分构成:电源支持和数据传输部分;接收垂直地震信号分量的电路以及接收两个水平分量地震信号的电路部分[3]。三分量数字检波器的数字检波电路部分都是基于微机电系统(MicroElectroMechanicalSystem简称MEMS)和用于力反馈用途的集成电路(ASIC)构成的。

MEMS系统是由单晶硅制成的惯性质量块电极系统。MEMS本质上是由两对固定电极和一块可移动的质量块电极构成的,可移动的质量块电极和固定电极之间形成了两个动态电容,当检测到信号时,可移动的质量块电极就会沿着工作轴的方向来回加速度运动,那么电极之间形成的电容间隙就会发生变化,产生不同的电容量,电容量变化的信息反馈到ASIC电路中,从而使ASIC电路产生一个力来平衡可移动质量块电极的运动,迫使质量块电极返回到零位置。这个平衡力在ASIC电路中被转换成一个电压值信号来阻止可移动质量块电极的运动,用于力反馈用途的集成电路主要用于伺服控制回路和∑的变换并输出24位数字信号[4]。

贝39井地区三分量设计关键思路

通过2008年的乌南三维资料分析,找到适于本区地震采集的技术方法,新采集资料频带较以往提高了15~20Hz,基本能满足地质任务要求。利用数字检波器接收,动态范围大,接收频谱宽,有利于进一步提高目的层资料的分辨率。在以上分析的基础上,对地震采集参数进行优化,采取以下具有针对行的采集设计思路,最终取得满足地质任务的地震资料。

采集思路:

(1)增大采集排列长度:提高主要目的层陡坡带的成像精度

(2)增加覆盖次数:提高目的层资料信噪比

(3)缩小面元:提高采样精度

(4)激发技术:追踪岩性逐点设计井深

(5)接收技术:采用数字检波器接收,提高分辨率

该区地势平坦,地表条件相对简单,但地下局部构造复杂,总的构造走向为北东向,主要断层的发育方向多为北东向。根据以往采集经验,沿倾向、尽量垂直断层和构造方向观测,地震信息丰富,对于准确落实构造形态较为有利。综合考虑地表及地下地震地质条件,观测方位角确定为129°,即垂直大断层和构造走向方向观测。线束观测系统野外施工、质量控制、资料处理都较为简单易行,考虑到本区静校正问题相对简单,因此本次勘探可以采用线束式。本区对速度分析精度要求较高,对岩性研究要求更均匀的方位角和偏移距分布,当炮排距较大时,为改善炮检距和方位角分布,应采用斜交式观测系统。斜交观测系统炮线间的转换是渐变的,有利于提高方位角和偏移距分布的均匀性。该区构造复杂,主要目的层埋深差异变化大,为保证对各个方向波场采样的对称,宜采用对称排列观测。该区断裂复杂,纵横向倾角均较大,速度变化较快,束线间排列滚动距离不宜过大,考虑到三维叠前偏移对空间采样的要求以及保证横向具有一定的覆盖次数,本次拟采用较多的接收线数。

根据地质任务中对采集的要求,运用求取的地球物理参数进行分析论证,分别计算出不同目的层所能达到的纵横向分辨率和要求的最高保护频率。

通过分析可以看出,达到本次采集对频率的要求,通过后期的处理,基本可以完成地质任务。

面元大小一方面直接影响资料的品质,另一方面对于勘探成本、勘探效益均有重要影响。由于该区地层倾角较大,断裂非常发育,局部构造复杂,绕射波和侧面波较为发育,而较小的面元尺度是提高资料纵横向分辨率的保证,有利于落实断裂细节特征,同时考虑到本区局部构造轴向特征不明显,纵横向地层倾角均较大,横向小断裂也较为发育,为提高资料纵横向分辨率、有效落实断裂位置,面元边长不宜过大。另外,基于对岩性的研究依赖于较高的横向分辨率,同样要求较小的面元。

根据以上的分析和论证,结合本次采集的地质任务主要目的层为T2-2及其以下地层,目的层倾角较大、断裂发育,对采集资料横向分辨率要求较高,不大于20m的面元可满足本次采集要求。

结束语

虽然我们对数字三分量检波器的应用取得了一定认识,但必须认识到应用数字检波器应该着眼于信噪比和分辨率的问题,为此需要对模拟检波器的组合方法进行认真的思考,避免因为组合而对最终资料产生不利影响;要重点考虑施工方法的进一步更新,尝试使用高采样率,使得在采集阶段能采集到更高频率的地震波,同时进行单炮和剖面处理综合分析。相信随着地震检波器的改进,影响地震勘探进一步发展的因素将会很大改观,必将为提升资料品质和提高勘探效益提供坚实的技术保证[35]。

参考文献:

[1]刘光林等.地震检波器的发展方向.勘探地球物理进展,2003,26(3)

[2]董世学,张春雨.地震检波器的性能与精确地震勘探[J].石油物探,2000,39(2):124-130

地震勘探技术范文篇7

关键词:地质勘探技术重要性技术应用技术分析

煤是目前我国非常重要的能源之一同时煤也是冶金工业和炼焦工业的重要原料。随着煤的液化和气化技术研究的进一步深入,以煤为原料生产燃料更进一步促使煤在能源中的比重加大,并且在煤或煤灰中还能够提取有利用价值的金属元素如金、锗、铀、镓、钒等。煤资源埋藏于地下,使其具有隐蔽、稀少和复杂的特点。因此,煤田资源的勘探难度大、成本高。煤田地质勘探的最终目的是为煤矿建设设计提供煤炭资源、储量和开采技术条件等提供必须的地质资料,以便大大地减少开发风险和获得最大的经济效益。

1、地质勘探工作重要性分析

地质勘探工作是工程建设的指引、是煤炭开采工作的指引。科学的地质勘探工作能够为后续工作提供基础数据,为后续工作的工艺设计等提供技术的参数。在现代工程建设与煤炭生产中,由于地质勘探工作误差造成的事故时有发生。究其原因一方面是由于勘探工作误差与质量造成,另一方面也是由于建设施工企业对地质勘探工作不重视,缺乏足够的分析与探讨造成。针对这样的情况,现代工程建设与矿山开采中,应加强对地质勘探工作的认识。积极引入现代地质勘探技术,以此提高地质勘探工作质量,为后续工作的开展奠定基础。以此就现代地质勘探技术的应用进行了分析与论述。

2、现代地质勘探技术的应用

2.1三维地震勘探技术的应用探讨

三维地震勘探技术是目前油气勘探的重要技术方式。三维地震勘探技术以其高精度、高分辨率的特点提高了油气勘探的效率。这一技术是在二维地震勘探技术的基础上发展而来。通过将地震测网的方格状或环状布置实现勘探目的。三维地震勘探技术能够精确的落实储集层变化,提高钻探的成功率。三维地震勘探技术的应用通过野外地震数据资料收集、室内地震数据处理以及地震资料解释三个步骤实现地质勘探的最终目标。在现代油气田勘探中,三维地震勘探技术提高了勘探的准确性与勘探效率,为我国油气开采奠定了坚实的基础。通过三维地震勘探技术为我国油气开采提供了准确的勘探数据,为提高油气开采工艺设计与安全奠定了基础。

2.2工程地质勘探技术应用分析

工程地质勘探是对影响工程建筑物的地质因素进行调查研究的工作。按照其勘探方式的不同分为地球物理勘探、钻探与坑探等几种方式。目前,在我国的工程地质勘探中多采用地球物理勘探仪进行岩土地质的密度、导电性、弹性等物理性质的勘探。其工作原理是通过电法中的视电阻率法进行地面物探。另外,浅层折射法和声波勘探法也有一定的应用。利用物探技术能够实现经济、快速的勘探,在对地质要求不高的工程建设中较为常用。

钻探与坑探在建筑工程地质勘探中也较为常用。通过钻探机械进行钻探并取样后进行地质构造分析。以此了解建筑工程所处位置的地质条件能够为建筑物提供良好的持力层。钻探较坑探效率高,且受地面水、地下水以及勘测深度影响较小,在目前的建筑工程地质勘探中有着重要的应用。但是由于不易采集软弱夹层岩心,且不能用来进行大型现场试验,因此,在特殊地质条件勘探时多采用坑探方式或其他方式进行地质勘探。由于钻探与坑探工作成本较高,因此其应用中需要科学的进行孔、洞的设计,以此在减少工作量的同时尽可能提供更多的地质资料,以此降低勘探成本。

2.3公路隧道地质勘探中的技术应用

公路隧道地质勘探中,地质勘探技术应用较多。常用的方法有电法勘探、电磁法勘探、地震勘探、声波探测、重力勘探、磁力勘探与放射性勘探等。在实际的勘探工作中,根据实际情况选择相应的勘探技术。在具体的勘探工作中,首先应对公路隧道的资料进行收集与分析,明确地质勘探工作要求。根据既定隧道勘探选线进行地质初探,了解工程初步地之后,在根据工程初探资料、原始资料等制定后期详细勘探计划。选择适宜的勘探技术进行勘探工作,以此为隧道工程的施工奠定基础。在公路隧道地质勘探中,还需要根据隧道工程预定线路进行地质勘探分析工作,提高勘探工作质量的同时注重勘探安全,避免勘探事故的发生。

3、关于现代地质勘探技术应用对勘探企业需求的分析

现代地质勘探技术的应用中,勘探技术本身的发展及其技术相应设备仪器发展都对勘探企业的技术水平提出了更高的要求。要求地质勘探企业能够根据勘探技术的发展及其相应设备的发展进行自身技术水平的提高。通过勘探技术人员水平的提高以及在培训工作等实现新技术的应用、实现新设备的应用。在勘探企业新设备引进后,需要根据设备操作说明书或厂家技术培训人员对勘探设备操作人员、维护人员进行相应的培训工作。以此使新勘探设备仪器等能够实现准确的勘探,提高勘探质量。

4、结语

综上所述,现代地质勘探技术的应用中新技术应用逐渐增加。新技术的应用为勘探企业提高勘探质量提供了技术支持,为勘探企业提高工作效率、降低勘探成本奠定了基础。在新技术应用的过程中,地质勘探企业要加强对新技术的理解与经验总结,为勘探企业提高技术水平奠定基础,为勘探企业新技术应用水平的提高奠定基础。针对新技术应用以及现有技术应用中存在的问题,勘探企业还应加快自身综合技术力量的提高。以人员外出培训、内部培训以及相应技术经验总结文献资料购买等方式提高企业对勘探技术的应用能力,提高勘探工作质量。

参考文献

[1]梁景涛,刘刚.公路隧道地质勘探技术应用及问题分析[J].地质勘探,2009,12.

[2]王丽华.油气勘探技术应用现状与新技术推广[J].能源科技,2008,11.

[3]赵世伟.工程地质勘探常用技术与勘探质量控制[J].勘探资讯,2008,7.

地震勘探技术范文

关键词高精度地震技术;煤田地质勘探;资料处理;资料解释;地质成果

中图分类号TE1文献标识码A文章编号1674-6708(2011)38-0118-02

高精度地震技术为油气勘探提供可靠的地质成果,在油气勘探领域是公认的事实[1]。但是,由于煤田许多煤层的单层厚度薄、断点落差很小、断点平面位置要求非常高,所以煤田地质勘探对高精度地震技术提出了更高的要求[2]。因此,应用高精度地震技术服务于煤田勘探,应该讲是地震勘探技术深入发展的新课题。

1孔庄煤矿地表地质概况

孔庄煤矿处在华北盆地南端,沉积地层有第四系、下白垩统-上侏罗统、二迭系上、下统、石炭系上、中统、中奥陶系,由于地层蚀较多,形成多个不整合面,最大埋藏深度在1500m~2000m之间。

孔庄煤矿的煤层主要在石炭系上统太原组和二迭系下统山西组。太原组为主要含煤层,共计13层,其中以21号煤层比较稳定,为可采煤层,平均厚度为1.54m,顶板为灰岩,底板为泥岩、细砂岩。17号煤层由于受岩浆岩的侵入,大部分变为天然焦或被岩浆岩吞蚀,呈局部可采的不稳定煤层[3]。

山西组含煤层4套,以7、8号煤层为主采煤层,埋藏深度为650m~1200m。山西组7号煤层平均厚度为4.3m,较稳定结构简单。煤层顶板为砂质泥岩或泥岩,底板为泥岩,埋藏深度为500m~1200m。8号煤层平均厚度为3.25m,也较稳定结构简单。煤层顶板为砂质泥岩或砂泥岩互层,底板为泥岩、细砂岩。

二迭系下石盒子组为一陆相含煤建造,仅有2~3层薄煤层,几乎无可采价值。

本区地质构造较简单,断裂发育也较简单,大于5m的断层较少,主要以正断层的小断层为主,断层走向呈北东向和北东向。地层做倾角一般在250,局部可达270,呈北东向与北西西向。

2三维地震勘探地质任务

1)查明探区内7、8号煤层≥5m断层落差、性质及产状,其平面误差小于20m;

2)解释落差小于5m的断层及断点;

3)查明探区内7、8号煤层的赋存状况及褶曲构造形态,要求煤层埋深误差小于1.5%;

4)探查并解释测区岩浆岩、陷落度等其它地质构造发育情况;

5)解释17、21号煤层的赋存情况。

3三维地震勘探野外采集方法

根据地质任务要求及测区内深层地震地质条件,针对本测区断层落差小、煤层厚度薄、地层倾角较大及地表条件复杂的特点,通过室内反复认证和采用计算机设计,结合现场的试验结果,确定本测区的野外采集方法为:

1)观测系统:四线六炮;覆盖次数:24次;道距:20m;接收线距:80m;

2)CDP网格:10m×10m;

3)采样间隔:0.5ms;记录长度:1.5s;

4)陆上采用AG-3高灵敏度检波器线性组合;运河、鱼塘和河流内采用压电检波器;

5)采用特种炸药震源井中激发。

4三维地震勘探资料处理

孔庄煤矿深部煤层三维地震勘探资料处理主要还是应用了常规三维处理流程进行。为了保证资料处理质量,开展了两项特殊处理手段:

1)三维道内插技术,把CDP面元由10m×10m细分为5m×5m进行偏移处理;

2)在精细建立偏移速度场的同时,进行了三维一步法偏移。

经过反复进行试验参数对比,精细地选择各项数据,使处理质量明显提高,有效波主频达到70Hz,目的层反射能量强,连续性好,大小断点清楚,构造特征明显,达到和满足了地质任务要求。

5主要地质成果

在三维地震资料解释过程中,采取了“地震地质相互结合,相互校验”的办法,充分运用纵横剖面联合解释、任意切剖面验证解释、水平切片参证解释的办法。及充分使用三瞬剖面、层拉平解释和地层倾析分法,综合应用各种资料相互印证的手段,取得了很好效果(图1)。

1)构造形态

(1)整体构造形态

本区构造形态相对简单,主要表现为一个走向NE、倾向NW的单斜构造,地层倾角一般为25°左右,局部达27°。整体构造具有从南向北由陡变缓的趋势。

(2)局部构造

在地层整体北西倾斜的单斜构造背景上,本区沿13和15勘探线附近形成了2个宽缓的微褶曲构造(图2)。

2)断层及断裂特点:本区断裂比较发育,近3km2的范围内共解释大小断层75条,主要发育有NE、NW向两组断层,以NE向断层为主(近50条),以发育倾向断层为特征。根据断层形成规模、断层级别以及断层可靠程度等,该区落差大于5m的断层有21条,其中17条断层落差小于10m。除3条大断层其延伸长度大于500m外,一般延伸长度在100m~300m之间;其它断层一般落差小于5m,延伸长度小于100m。

3)完成了8号、17号、21号三层煤的底板构造图,断层展布图。

4)总结了孔庄煤矿深部采区三维地震勘探野外采集总结了一套行之有效的复杂地表条件下的野外施工方法。

5)总结了资料处理在试验基础上形成了一套适于煤田勘探的处理流程。

6)充分利用三维地震的特点,提供了多种显示功能、追踪方式和处理分析手段,使解释工作灵活多变,丰富多彩,成果更加可靠,构造解释深度误差小于1.5%,断层平面摆动基本控制在20m之内。

6结论

通过对煤田开展地震勘探工作,对其煤田地质特征的认识,结合实践中得出的结论,初步取得了以下几点体会:

1)煤田地质勘探工作总体讲落后于油气勘探,其勘探技术也不及油气勘探。应用地震勘探技术为煤田地质勘探服务,搞清煤层在地下埋藏的地质结构、展布规律、断层的分布特点、预测分布范围、煤层厚度变化等,是指导煤田开采及煤田规划等的极其重要的地质资料;

2)经过实践证明,地震勘探技术有充分的能力解决好煤田开发过程中的地质技术问题,可以解决好煤田开采过程许多难题,提高煤田开发的能力,搞高煤田开采的技术水平。

参考文献

[1]赵殿栋,吕公河,等.高精度三维地震采集技术及应用效果[J].石油物探,2001(1).

地震勘探技术范文篇9

1、车载RTK技术在地震勘探中的应用介绍

1.1选择作业时段地震勘探工区地形、地物、地貌往往比较复杂多变,为提高作业的精度和获取完整的数据,必须根据卫星可见预报和天气预报选择最佳观测时段。卫星的几何分布越好,定位精度就越高,卫星的分布情况可以用TGO或者GPSurvey软件的Planning项查看多项预测指标,根据预测结果合理安排工作计划,便能达到特殊工作的要求和目的。

1.2建立测区控制网在通常的作业情况下我们都用GPS静态测量方法建立测区控制网,相邻点间间距8-15公里,并与高等级的国家GPS控制点和水准点进行联测,求出各控制点平面坐标,同时投影变形不得不考虑,变形的程度与测区地理位置和高程有关。

1.3求取地方坐标转换参数合理选择控制网中已知的WGS84和地方坐标(或地方独立网格坐标)以及高程的公共点,求解转换参数,为RTK动态测量做好准备。选择转换参数时要注意以下两个问题:

①要选测区四周及中心的控制点,均匀分布;

②为提高转化精度,最好选4个以上的点,利用最小二乘法求解转换参数。

1.4基准站选定基准站设置除满足GPS静态观测的条件外,还应设在地势较高,车或人容易进入而且四周较为开阔的位置,以便于电台信号的传递和发射。根据相应的规定(例如从基准站到流动站之间的距离不能超过10KM等),在工区范围内选择适当的GPS点和已有的高等级GPS点建立GPS网,通过GPS网观测和平差计算得出理想的基准站点的坐标。为了便于观测和驾设基准站,点的选择必须要合理。

1.5放样内业数据准备用DataTransfer软件下载GPS测量数据,将外业作业手持机中的GPS观测数据或者点放样数据传输到微机中,并对相应的数据作及时拷贝。然后利用GPseismic测量软件或者TGO或TSO等测量数据处理软件都可以很容易的对GPS观测数据进行处理。数据的处理主要查看PDOP值是不是超限,放样精度是不是达到作业精度的要求,基线距离是不是在规定的距离范围内等等。

1.6外业操作架设基准站是野外作业的主要工作之一,在基准站架设好后开机,开机后对基准站接收机进行必要的系统设置、无线电设置及天线高和基准站点坐标等输入工作。查看基准站信号发射是不是正常,等到信号发射正常后通知流动站工作人员开始工作。

流动站接收机开机后首先进行系统设置,输入转换参数,再进行流动站的设置和初始化工作。然后调出已经上装好的项目进行放样。当然在作业之前的设置工作必须要由经验的人员完全设置好。不同的工作目的,流动站手持机的设置是不一样的。

2、应用实例

2005年我公司对阿曼QARNALARM区域进行三维地震勘探,总面积到达950多平方公里。测区地势较为平坦,工区内除了有些电线,输油管道,输汽管道,地下光缆线,几个社区,和部分石油设施厂房等以外没有其它的设施。整个工区除了1个山包以外都较适合车载GPS-RTK野外作业测量。

2.1作业组织及作业进度利用车载RTK技术进行施工放样,每个组一辆皮卡,一个测量员兼司机。

采用2+8作业模式:基准站2套架设在控制网点上,由内业人员去架设,设备都装载在专门的设计的基准站车上,不许派人专门看管基准站,由于工期较长,我们将基准站设成自动开关机状态,每天早上5:30开机,下午4:00关机,基准站电源采用太阳能板充电方式,所以1-2个月不需要再去查看,除非天气有大的变化,比如大风等之后派人去查看即可。流动站8套,8个测量员,8辆皮卡。这种作业方式效率极高,而且用人很少。

我们所有的车上都有VTS(VehicleTrackSystem)和VHF电台,利用VTS可以在营地VTS微机上监视野外作业的情况,如车的实际位置,当前车的行驶速度以及行驶的方向等。而VHF电台野外作业人员可以和营地电台操作员或者管理者进行消息交流。

实际作业进度,每天完成测点4500-5000个点。而且作业时间不会很长,一般情况下5-6个小时就完成了当天的任务。

2.2数据处理内业数据处理员1个,当天的数据当天处理,并对相应的原始数据进行拷贝保存。分析当天数据的质量和精度。及时反馈外业作业的情况,保证工作顺利进行,而且达到合同规定的要求。

2.3精度情况我们的工作都是放样工作,我们可以用放样坐标和理论设计坐标进行比较查看放样的情况,一般情况都能达到工作精度的要求。目前地震勘探的精度要求是1米,这对GPS差分测量来说实在是太简单了,经过长期的工作和比较结果可以看出来,用车载GPS作业对目前地震勘探作业来说从质量,精度,速度及经济效益方面来讲都是最佳选择。

3、RTK动态测量的特点

1)在能够接收GPS卫星信号的任何地方,可进行全天候,全方位作业。

2)RTK动态测量实现了实时测量,放样精度可达到厘米级。

3)多台流动站可利用同一台基准站发射的信号各自独立工作,相互没有任何影响。

4)实时提供测点三维坐标,现场及时对观测质量进行检查。

5)GPS作业放样误差不累积。

6)RTK作业改变了常规测量要求站站之间通视的要求。实现了真正的站站独立方式。

地震勘探技术范文

关键词:多波多分量问题展望

中图分类号:P631.46文献标识码:A文章编号:1007-3973(2013)007-125-02

1引言

随着勘探难度的增加和对岩性勘探要求的日益提高,以纵波勘探技术为依托的传统三维地震勘探已经难以应对勘探过程中遇到的诸多新问题。在这样的背景下,多波多分量地震勘探技术在近年来得到了迅速的发展。所谓多波多分量勘探是指利用三分量检波器同时记录地震纵波(P波)、横波(S波)和转换波(P-S波)信号,并进行相应的资料处理和解释工作。相比以记录纵波为主的传统勘探方法,该技术能够获取更丰富的波动信息,在描述储层参数和空间展布、预测裂缝发育程度、研究储层含气性等方面表现出明显的优越性。

2多波多分量地震技术发展历程和应用现状

针对多波多分量地震勘探的理论研究最早始于前苏联,而相应的勘探实践则自20世纪70年代以来先后在前苏联、美国、法国等国家展开。这一时期的勘探主要着力于利用横波速度低于纵波从因此在理论上能实现更高的分辨率这一特点,试图获取分辨率更高的地震资料。但由于横波在速度低于纵波的同时,其频率也低于纵波在因此传播的过程中衰减严重,采集到的横波地震资料信噪比过低,因此多波多分量勘探在该阶并未取得显著进展。

20世纪70年代末至80年代中期的多波多分量勘探开始转为综合利用纵波、横波的联合勘探,其应用主要集中于求取包括泊松比在内的岩石弹性信息和鉴别含气亮点的真伪等方面。但由于多波勘探相较于单一的纵波勘探成本过高,且在当时尚有诸多相关基础理论和技术问题未能得到妥善解决,因此多波地震勘探在岩性勘探方面的应用最终被以AVO为基础的纵波岩性勘探所取代。

多波多分量勘探近年来的再次兴起始于20世纪90年代海上多波地震勘探的成功。海上多波多分量地震勘探先于陆上取得成功的原因主要来自两个方面:(1)一定深度的海床相比于陆地环境噪声更低,采集到的横波资料信噪比较低;(2)海洋地震勘探面临着诸如硬海底、气柱等用传统纵波勘探难以解决的问题,这些问题的提出促进了海上多波勘探的发展。此外,海底多分量电缆接收系统(OBC)的研制成功为海上多波勘探排除了资料采集方面的障碍。

自20世纪90年代末期以来,陆上多波多分量勘探再次受到关注。基于微电子机械系统(MEMS)的三分量数字检波器的广泛应用为多波多分量勘探的实现提供了有力的技术保障。相比传统的检波器,三分量数字检波器的优越性表现在动态范围大,输出的信号频带平坦,具备较大的频带宽度,抗干扰能力强等方面。近年来的多波多分量勘探以利用P-S转换波为主,这是因为激发横波需要专门的震源而导致成本升高。相比之下转换波利用传统的纵波震源即可激发,并且同横波一样能够反映岩性和各向异性等地下信息,尽管成本仍然高于普通的纵波勘探但低于专门的横波勘探。因此,目前工业界应用较多的多波勘探方法是利用纵波激发,同时采集纵波和转换波的地震资料。

目前,海上多波多分量地震勘探正逐渐趋于成熟,而路上勘探受限于低信噪比、静校正复杂等问题尚不能完全实现商业化应用。北海地区的Alba油田是应用多波多分量进行勘探取得良好收益的典范,对P-S转换波的地震解释发现了以往纵波难以识别的含油饱和砂岩,进而从根本上改变了对该区域的油藏构造认识。我国多波多分量勘探应用较为成功的案例是南海西部的莺歌海盆地多波地震勘探,应用转换波地震勘探成功解决了纵波勘探面临的“气云”问题,在中深部地层的岩性识别和含气预测方面也取得了较大进展。

3多波多分量地震勘探相关技术

3.1采集技术

与采集相关的技术主要包括震源、检波器、观测系统三个方面,由于需要激发并接受到横波或转换波以及纵波,多波多分量地震勘探对上述三个方面提出了比传统纵波勘探更多的要求。

目前陆上多波勘探用来激发横波的震源有三排井震源、水平可控震源、倾斜气枪震源等,但这些方法存在的共同缺点在于成本过高对周围环境影响较大,且激发的横波衰减较快观测效果并不理想。因此采用纵波激发对,对转换波观测仍是目前多波地震勘探的主要方式。海上多波地震勘探震源则同纵波勘探一样采用空气枪震源。

早期的陆上多波地震勘探采集使用双检波器,即除设置用于记录地面震动垂直分量的检波器外再沿水平方向设置一个用于记录水平震动的检波器,近年来微电子机械系统(MEMS)的发展使三分量数字检波器成为主流。海上多波多分量采集目前主要采用4COBC电缆(由四个检波器组成,其中三个记录速度分量,一个记录压力分量),将检波器组内置或外挂在电缆上铺设于海底。相比陆上作业海上多波勘探面临着更复杂的定位问题。

陆上和海上多波勘探都面临着数据量增多的问题,由于要在记录纵波信息的同时记录横波或转换波的信息因此多波勘探的观测系统记录道数相比于纵波勘探成倍的增加。此外,考虑到纵波和转换波传播特点的不同,在设置偏移距时要兼顾对二者的接收,要实现这一目的就要在施工前进行波场特征调查。

3.2处理技术

当前针对多波多分量地震资料的处理技术根据处理流程的不同大体上可以分为两类,一类是基于标量波场理论的波场分离处理方法;另一类是基于矢量波场理论的多波联合处理方法。其中波场分离处理方法是目前应用的主流,而多波联合处理方法由于相关技术不够完善目前尚处于理论研究阶段。

转换波地震资料处理的思路大体上同纵波地震资料相同,但考虑到其传播路径的非对称性这一特点又不能完全照搬纵波资料处理中的成熟方法。目前基于波场分离理论的多波地震资料处理基本流程是首先进行波场波场分离,然后分别处理纵波和转换波。对转换波的处理主要涉及到不对称抽道集、确定转换点、噪声压制、静校正、动校正、转换横波速度分析、转换横波偏移、求取纵横波速度比等。其中,横波静校正问题是转换波资料处理面临的主要难题之一。这源自横波信噪比低、对应的低速带更加复杂,且受到各向异性的影响等方面。

3.3解释技术

多波多分量地震资料解释的基础是做好纵、横波地震资料的层位对比,这也是其主要难点之一。在此基础上要结合VSP和测井资料等进行纵、横波联合反演。正确解释的多波地震资料可用于分析地下介质的岩性及其含油气性、识别真假两点,利用横波分辨率高的优势可识别小断层、薄互层、尖灭等微小构造,通过横波分裂现象研究地下介质的各向异性进而发现裂缝油气藏。此外转换波资料还可以用于改善地震成像质量,在对饱含气的油藏和波阻抗差异较小的储层其应用效果尤为明显。综合多种资料信息进行综合解释是多波多分量地震资料解释的主要发展方向。

4多波多分量地震勘探技术面临的主要问题及发展趋势

4.1多波多分量地震勘探技术面临的问题

尽管对多波多分量地震勘探的研究迄今已经取得了较大的进展,并实现了一系列成功的商业应用,但这项新技术仍然面临着诸多尚未解决的问题,这里对其中较具代表性的几个方面进行总结:

(1)横波在传播过程中衰减严重,接收到的信号信噪比低。如何有效的去除其中的噪音,并正确认识其传播规律进行有效的静校正是利用多波地震资料的基础。

(2)当前缺乏针对转换波和横波的精确速度建模方法。由于横波和转换波的传播规律比纵波更加复杂,且缺乏相应的岩石物理实验数据,因此对这两种波尚不能进行精确的速度建模。精确的速度模型是对相应地震资料进行一系列处理的基础,对深度域成像和纵、横波联合层位对比等工作也有着重要的意义。

(3)对横波分裂不能实现准确的分析。横波在传播过程中遇到各项异性介质时会分离为极性正交的两类横波。该现象有助于认识裂缝的发育情况,进而预测裂缝油气藏。但目前对各项异性的分析在各向异性层位较多时便会出现较大误差。

(4)对多波多分量地震资料的综合解释在理论和技术上不够健全。

4.2发展趋势

多波多分量地震勘探被认为是地震勘探领域的第四次革命。尽管该技术从基础理论层面到技术层面都还面临着诸多尚未解决的障碍,但随着勘探工作对复杂油气藏和岩性勘探要求的提高,以及对各向异性问题认识的深入认识,多波多分量勘探有着广阔的发展空间和应用前景。

在可预见的未来,多波多分量地震勘探仍将以转换波勘探取代直接针对横波的勘探,而与转换波特点相适应的处理技术将是研究的重点。现有的多波资料处理方法基本是以波场分离技术为基础,但该方法很多情况下仍然难以解决纵、横波场的耦合问题,很多情况下难以是两种波的波场真正分离开进而影响成像精度。相比之下,多波地震资料联合处理方法从理论上能根本性的避免波场耦合对成像精度的影响,但该方法目前尚在理论研究阶段且对计算能力要求较高,投入实际应用尚需时日。

目前的多波勘探更多的关注对勘探本身在采集、处理、解释方面的研究,而在多波勘探资料与其他勘探和地质资料的结合方面研究较少。事实上,转换波资料与纵波资料、VSP资料、测井资料等其他资料的综合运用将对其解释工作具有重要意义。

此外,目前尚无针对多波多分量资料进行综合处理、解释的专门商业软件,这种情况也从一定程度上制约了多波多分量勘探技术的快速发展。此类软件的开发将随着多波多分量勘探商业价值的日益凸显而受到更多的重视。

除了自身理论和方法上的完善,多波多分量勘探也将与AVO、时移地震、全波形反演、逆时偏移等技术实现更加紧密的结合,在微小构造解释、岩性勘探等方面发挥优于传统勘探手段的作用。

参考文献:

[1]徐丽萍,杨勤勇.多波多分量技术发展与展望[J].勘探地球物理进展,2002,25(3):47-52.

[2]普济廖夫.横波和转换波法地震勘探[M].裘慰庭,李乐天,译.北京:石油工业出版社,1993:1-117.

[3]刘海波,全海燕,陈浩林,等.海上多波多分量地震采集综述[J].中国石油勘探,2007,(3):52-57.

[4]朱光明,李庆春.多分量地震的装备[J].石油仪器,2001,15(1):48-51.

[5]钱荣均.P-SV转换波勘探和应用[J].石油地球物理勘探,2010,17(6):90-93.

[6]黄中玉.多分量地震勘探的机遇和挑战[J].石油物探,2011,40(2):1312-1371.

[7]李录明,罗省贤.多波多分量地震勘探原理及数据处理方法[M].成都:成都理工大学出版社,2011.

地震勘探技术范文篇11

[关键词]三维地震采区

[Abstract]ThispaperintroducestheapplicationofThreeDimensionalSeismicExplorationMethodontheSouthThirdMiningAreaofacertaincoalmine.71faultswereshowedinthisexplorationarea,inwhichthereare61reliablefaults,10relativelyreliablefaultsand31areaswithoutanycoal.Thoseinformationprovidesscientificfoundationfortheproductionsaftyofthecoalmineandsavesthecost.

[Keywords]ThreeDimensionalSeismicminingarea

0.引言

随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。

近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

1.简述三维地震勘探技术及施工主要环节

三维地震勘探技术是从二维勘探技术演变而来,其主要是综合了物理学、数学、计算机学、图像学等科学,并通过回射地震波信息来对地质情况进行分析。与二维勘探技术相比,三维勘探技术的优势更为明显示,这主要是由于三维勘探技术所获得的空间数据较大,而且密度较高,信息点最高的密度可以达到12×12米。

三维勘探技术依靠计算机和软件处理来完成,主要分为野外数据采集、室内数据处理、地震资料解释三个步聚,是一项复杂的,综合性较强的系统工程。[2]

2.工程实例

2.1地质概况

井田煤系地层基底为前震旦系变质岩系,煤系地层为中上侏罗系,浅部为白垩系及第四系地层。第四系由亚粘土、沙和砾石等组成。厚度20米-35米,一般为25米。

本井田煤层按至上而下的顺序编为20个煤层。1―10煤层为上含煤段,11―20煤层为下含煤段。煤层在西部发育较好,可采煤层比较集中,可采煤层数一般达到6―8层,可采累计厚度一般在8―10米;到井田东部可采煤层数减少到2―4层,可采累计厚度一般在3―5米。各可采煤层厚度及累计厚度、可采煤层数等都有从西向东变薄、变少的规律。煤层间距的变化以4、7煤之间为最大,两层间距由西向东逐渐变小,其它各层的间距变化规律同4、7煤基本一致。

2.2地震地质条件

2.2.1表、浅层地震地质条件

测区表层第四系地层由黑色腐植土、黄土、砂土、砂质粘土组成,以冲积为主,底部有流砂或砾石。根据测区周围民井调查,本区潜水面约在7-9米,其水位随表层黄土厚度以及季节变化而异。根据测区内钻孔资料,测区表层有一层厚度约15米的流砂层,流砂层之下为砂砾层(厚约为10米),因此对地震勘探成孔及激发能量的下传很不利。

2.2.2深层地震地质条件

通过对区内地层组合的研究分析,从岩性组合上看,地层韵律比较明显,地层之间存在着明显的波阻抗差异,从横向上看,同时代地层厚度、岩性和赋存深度都相对稳定;主采煤层4煤层、7煤层倾角一般在4°-8°以内,有利于地震反射波的接收和追踪。主采煤层与围岩相比,具有较大的波阻抗差异,能形成可用于煤层赋存形态分析与研究的标志反射波。因此可以说本区深层地震地质条件对开展地震勘探比较有利,这就为完成本次勘探要求的地质任务奠定了有利的物性基础。

综上所述,本区表层地震地质条件较为复杂,浅层地震地质条件一般,深层地震地质条件较好,适合进行地震勘探。

2.3数据采集

2.3.1地震波的激发

1)井深:采用单井16米-20米井深,踞村庄及建筑物较近时增加井深。

2)激发震源:采用硝铵胶质炸药,药量2公斤。遇村庄及建筑物时采用0.5公斤药量;在距村庄及建筑物较近时采用0.3公斤聚能弹。

2.3.2地震波的接收

采用8线16炮制规则线束观测系统。如图1所示

图18线16炮三维地震束状观测系统图

三维观测系统的主要参数:

观测系统类型:规则线束状8线16炮制

接收道数:8×72=576道接收线距:80米

接收道距:20米炮排距:60米

纵向偏移距:20米最小横向炮检距:10米

最大横向炮检距:430米排列长度:720米

最大炮检距:838.63米炮线网格:20米(横向)×60米(纵向)

CDP网格:10米(横向)×10米(纵向)

激发方式:中点发炮

覆盖次数:4次(横向)×12次(纵向)=48次

2.3.3仪器因素

仪器型号:408UL遥测数字地震仪记录长度:1.5秒

记录格式:SEG―D采样间隔:1毫秒

仪器频带:全频带接收

2.3.4组合检波

三维地震勘探中,其反射波来自不同的层位和方向,检波器宜采用中心对称的线性组合方式,以使各个方向的反射波具有同等的组合特性,有利于压制不规则干扰波。从进一步提高信噪比和分辨率的角度出发,本次三维地震勘探采用3个60Hz数字检波器点组合。

2.3.5低速带调查方法

为了掌握区内低速带厚度和速度的变化规律,提供较准确的低速带静校正初始模型。本区按1千米×1千米网度共设计4个低速带调查点,采用井下激发,井上接收,即雷管按每1米捆绑在铁线上,然后由井底逐个激发仪器接收,到工作站解编,读取初至时间,解释低降速带速度和厚度。

2.4探测结果

2.4.1数据处理

根据本区的资料特点,经过多次反复资料处理试验,选定以下处理参数(表1)。

表1资料处理主要参数表

资料处理基准面70米

替换速度2500米/秒

地表一致性反褶积预测步长14毫秒

速度分析1个速度谱/40个CMP

滤波叠前BP(15,20-140,150)

叠后BP(20,25-120,130)

偏移延拓步长12毫秒,偏移速度由钻孔对DMO速度标定

资料处理后,获空间、时间采样间隔为5米×5米×1毫秒,平面面积为4.24平方千米、记录长度为1500毫秒的偏移数据体、叠加数据体、方差数据体各一个。

本区CDP满覆盖面积为2.17平方千米,控制面积2.00平方千米。

2.4.2数据解释

解释过程中按图2三维地震资料解释流程图进行。

图2三维地震资料解释流程图

2.5地质结果

南三采区三维地震勘探中,数据采集采用高覆盖次数,提高了资料的信噪比,资料处理采用多次反褶积以提高分辨率,数据解释采用了全三维解释技术对资料进行综合研究;得到了可靠的地质成果。控制了勘探区内的煤层底板起伏形态,发现断层71条,无煤带2个,完成了勘探任务,其主要成果如下:

1)探明了区内各煤层的底板起伏形态;

4-2号煤层埋藏最浅处位于测区西南部,底板标高约-240米;埋藏最深处位于测区西北部,底板标高约-390米。

7号煤层埋藏最浅处位于测区西南部,底板标高约-250米;埋藏最深处位于测区西北部,底板标高约-405米。

14号煤层埋藏最浅处位于测区西南部,底板标高约-330米;埋藏最深处位于测区西北部,底板标高约-510米。

15-1号煤层埋藏最浅处位于测区西南部,底板标高约-360米;埋藏最深处位于测区西北部,底板标高约-550米。

2)区内共解释断层71条,其中:落差大于等于50米的断层4条,占5.64%;落差大于等于25小于50米的断层6条,占8.45%;落差大于等于10米小于25米的断层12条,占16.90%;落差大于等于3米小于10米的断层19条,占26.76%;落差小于3米的断层30条,占42.25%;

3)探明了区内直径大于20米无煤带及赋煤异常带的分布范围。

4-2煤无煤带总面积:18609平方米;7煤无煤带总面积:21660平方米;14煤无煤带总面积:67755平方米;15-1煤无煤带总面积:46320平方米。

3.结论

三维地震勘探技术的应用,大大提高了勘探的精度和解决地质问题的能力,为矿井设计提供了更加可靠的地质依据。其勘探成果为采区设计及工作面的布置提供了主要的决策依据,缩短了建设周期,取得了良好的技术效果和可观的经济效益。[3、4]

参考文献:

[1]徐水师、王佟、等。再论中国煤炭地质综合勘查理论与技术新体系[J]中国煤炭地质,2009,21(12):4-6,23.

[2]王庆瑞论煤田三维地震勘探技术的应用科技论坛2011年第2期.

[3]于谦三维地震勘探技术在宋新庄井田中的应用中国煤炭地质2011年2月第23卷2期.

[4]李岩,王新建三维地震在淮北煤田采区勘探中的应用西部探矿工程2011年第2期.

地震勘探技术范文篇12

[关键字]三维地震勘探应用煤矿勘探

[中图分类号]TD82[文献码]B[文章编号]1000-405X(2013)-5-171-1

0前言

改革开放以来,我国的经济取得了傲人的成就,工业和民用资源需求日益膨胀,为了适应新时期下新的需求,有很多的新型资源应运而生,但是相比于煤矿、石油等不可再生资源,新的能源也有一些弊端,不能够完全替代前者。因此,人们开始将目光转向能够发现更多资源的技术上面,三维地震勘探技术可以精确的找到自然界贮藏的煤矿资源,大大提高了勘探效率和准确率,为我国煤矿勘探贡献巨大。笔者从事煤矿勘探行业,对三维地震勘探技术有着深入的认识,就以下三个方面入手,对三维地震勘探技术的应用谈谈自身看法。

1什么是三维地震勘探

三维地震勘探技术分为三个内容,这三个内容都是需要计算机和相关软件来进行的,这三个内容主要分为:野外地震数据资料采集、室内地震数据处理以和地震资料的解释,只有将这三个内容完全的实施好,才能说够对煤矿勘探起到重要效果。

三维地震勘探技术在提高煤矿勘探准确率和效率上面有着杰出的效果,对于我国经济发展而言,起着十分重要的推动作用。

2三维地震勘探技术的应用

作为目前寻找煤矿使用率极高的一种技术,三维地震勘探技术的应用已经成为了一种行业趋势,它在拥有精确定位煤矿田的同时,还能够对区域寻找煤矿的工作起着指导性作用,达到提高企业经济的效益和社会价值的效果,因此,勘探企业必须做好三维地震勘探技术涉及到的三个内容。

2.1三维地震勘探技术应用的基础之科学的野外地震数据采集管理

三维地震勘探技术的野外地震数据采集是三维地震勘探应用的基础,其对三维地震勘探技术应用的准确性有着重要的影响,同时,三维地震野外数据采集是一种面积接收技术,它在单位面积上的工作量较多、成本较高,所以,如何确定三维地震观测地点与区域是三维地震勘探的重要工作,在确定三维地震勘探区域后,要对其地震数据采集工作进行科学的施工设计,由于工区面积大小与地下地质构造大小、埋藏深度和倾角有关,地下地质构造越大地面工区面积就越大,深度和倾角越大地面工区面积也越大。野外资料采集是三维地震工作的基础,它直接关系到三维资料的处理效果通过严格的测量工作定好测线、爆炸点与接收的位置;通过钻井工作准备好炸药埋放浅井等工作使爆炸后产生的地震波经岩层棉结反射后准确的被检波器接收,获得煤矿埋藏情况的地震记录。

2.2室内地震数据处理之三维地震勘探技术应用的重点

对于整个三维地震勘探技术而言,野外数据的处理是非常重要的,会对整个技术产生质量上的影响。采集来的野外数据将被录入到专用的电脑中,会有专用软件对数据进行处理运算,并把不同的数据进行归类操作,取出来有效数据,摒弃无效数据或者一些对有效数据有干扰作用的数据。最后会对数据进行叠加,得出最终的结果,最终结果将会被显示成剖面图,呈现在工作者眼前。

在这个环节中,预处理方面扮演着对资料解编、对振幅进行恢复等工作,预处理工作是常规处理工作的基础工作,只有做好了预处理工作,常规处理才能达到精确的目的,而三位水平叠加作为三维偏移的基础性工作,也对三维偏移起着至关重要的作用。因此,在进行三维地震勘探数据的处理时,一定要重视这三个工作的进行,为后续工作打好基础。

2.3开展单点地展勘探技术的应用

单点地震勘探技术是近年来提出来的一项勘探技术,其核心就是是在野外实行高密度空间采样,即点源激发、单点接收、小道距或小面元观测,对信号和噪声实行“宽进宽出”,

避免采集过程中因对付噪声而使反射信息受到污染,然后利用计算机中的数字分析方法将信噪分离,在室内进行组合,最后达到压制噪声的目的,保持反射信号原始性和丰富性。

单点地震勘探技术重要的一项核心技术就是室内组合处理技术,室内组合处理可以避免检波器组合误差,理论分析和实际数据验证单点接收、室内计算组合是提高数据质量的良好手段。

组合是限制数据质量的一个主要原因,组合可以压制噪音但也限制了动态范围。单检波

器室内组合有两个主要优点:(1)可实施适当的空间去假频滤波,校正检波器的差异、静校正问题等引起的误差。消除了高程、静校正等因素后的道集组合可以减少相邻道时差在组合时的滤波影响,由于激发接收点的密度增大,静校正的精度计算精度会提高。(2)高密度勘探炮检点不采用组合或采用小基距组合,由于高密度采集采用点激发、点接收,各个方向的信号都被真实的记录下来避免了普通采集各向组合滤波特性不同的问题,因此,更有利于解决各向异性问题。

3地震资料的解释

地震资料解释是把经过处理的地震信息变成地质成果的过程,其是通过运用波动理论和地质知识,对勘探所在地综合地质、钻井等各项资料的分析,作出构造解释、地层解释、岩性和烃类检测解释及综合解释,并绘出有关成果图件,对工作区域作出含煤矿评价,提出钻探井位置等。这就需要三维地震勘探企业不仅要加强对勘探技术过程的严格管理与控制,同时还需要数据处理人员对数据的分析以及资料解释人员的综合分析情况,对勘探结果进行复核与审查,发现可能引起误差的数据或过程,及时进行纠正,确保勘探结果的准确性。

4小结

综上所述,三维地震勘探技术在目前的煤矿开采工作中,得到了普遍的应用,大大的提高了煤矿勘探开采工作的准确率和效率,对我国煤矿开采行业做出了巨大的贡献,同时,间接性的推动了我国经济的发展,但是,三维地震勘探技术对技术人员有着严格的要求,只有拥有高技能水平的人员,才能够深切的认识和运用好这项技术,对此,企业应当培养和吸收这类人才,为我国经济发展做出自身应有贡献。

参考文献

[1]王海东.我国目前三维地震勘探技术发展状况[M]科技时代,2011,8.