关键词:智能时代;会计人才;高校
纵观现如今人们的生活,智能产品已经无处不在,正一步步的改变着大众的生活方式,比如一部智能手机就可以处理很多业务。许多行业也进入了智能化工作时。就会计领域而言,以德勤为首的四大会计师事务所相继推出财务机器人来完成基础会计工作,给会计行业带来了巨大的挑战。
一、智能时代对传统会计工作的影响
(一)改变了会计工作方式,提高了工作效率
近几年的时间里,需要会计人员处理的工作因为智能化的发展同样发生了变化,企业通过建立财务账套系统,日常发生的发票开具、费用报销、凭证填制等业务都可以在财务软件上操作,期末账簿和报表可自动生成;货币结算时也可以通过互联网进行转账。简单的会计工作由于这些变化摆脱掉时空的束缚,不仅可以缩短会计人员的工作时间,工作效率也能有很大的提升。
(二)会计人员工作岗位发生变化
财务机器人的应用取代了处理基础财务工作的人员,使会计人员免于重复基本业务。更多的会计人员将转型到有价值的财务分析、财务决策以及其他管理岗位中。这就需要财会人员具备商务数据挖掘、财务数据分析处理、财务决策和企业管理等能力,能对报表和数据进行深刻解读,提取数据背后的信息,并把这些信息变为对企业经营策略的制定有用的信息。
(三)降低了财务风险,财务数据更加精准
智能机器发生错误的概率微乎其微,未进入智能时代前的会计工作中会有大批量的财务数据需要进行人工处理,不但枯燥还及易出错。人工智能在会计领域的应用保证了会计信息的真实和完整,而且还可以快速选取各种决策所需的相关数据和信息,大大降低了以往人工分析数据差错、数据不全面和数据分析结果滞后造成的财务风险。
二、智能时代会计人才培养存在的问题
(一)会计学专业课程设置存在缺陷
1.财务核算类课程比重偏大。目前大多数大学的会计学专业课程都侧重于财务会计,不够重视财务分析与财务管理,会计核算类课程多,且课程之间重复的内容比较多,这种传统的以财务会计为中心的课程体系已经不适应智能时代对会计人才的需要。2.缺少数据分析课程。智能时代下,财务机器人的应用会使会计数据自动生成,无需会计工作者进行手动计算。公司的财务分析、决策和其他管理工作会需要会计人员来进行,但目前会计学专业缺少数据分析类相关课程的设置,几乎没有学生拥有对财务数据的分析能力。3.理论知识的传授多过实践能力的培养。很大一部分大学的会计学专业都强调理论教学,对实践教学重视不够,导致很多高校学生毕业以后不能把所学的知识很好的应用到会计实际工作中。4.跨学科类课程设置不足。学科交叉是智能时展的主流方向,要把复合型会计人才列为当前各高校的培养目标。而目前,与其他专业学科设置课程整合是会计课程体系没有涉及的领域,各高校的会计学专业毕业生不能实现智能时代对会计复合型人才的需要,只掌握了单一的会计知识。
(二)缺少对学生自学能力的培养
会计是为社会生产活动服务的,必将随着社会的发展而不断变化,所以学生只靠在学校获取的知识是远远不够的,但目前高校教师的传授知识的方式只是讲授这一种,学生没有任何思考过程,只是把知识听了一遍,并不能使他们的自主学习能力有所提升,导致学生在工作中不能很好的适应环境、内容和工作方式等的变化。
(三)应用型师资不足
会计是实践较强的学科,若教师缺少实践经验,就不能很好的培养学生的实践能力。目前很多高校没有重视对应用型教师的培养,而是一味的鼓励教师进行学术研究,这对培养企业需要的会计人才极为不利。
(四)缺乏职业素养教育
职业素养是从业者按照职业岗位要求养成的行为习惯和良好作风,它是工作人员在从事其专业相关的活动中所表现出来的综合素质。会计职业素养就需要每个会计工作人员对会计这个职业有着崇高的理想和信念,遵守会计行业的纪律,履行其责任与义务,不断提升自己的职业技能,对这份职业充满兴趣,并保持良好的工作态度。目前高校对会计学专业学生的培养只停留在知识教育层面,忽视了对会计职业素养的教育,教学方法和考核方式缺乏多样性,各高校毕业生还没有实现智能时代对会计职业素养的要求。
三、智能时代会计人才培养改革策略
(一)完善会计学专业课程体系
1.减少财务核算类课程比重,增加数据分析类课程。高校在制定会计学专业人才培养计划时,要减少会计核算类课程所占的比重,增加管理会计、财务分析、风险分析、财务管理以及内部控制等课程比重。同时像财务分析、数据处理、挖掘业务数据这类有助于提升学生数据分析能力的课程需要增加到必修课中,以提升会计人员的数据分析能力。2.增加实践类课程,鼓励学生顶岗实习。高校不能仅限于传统的理论教学,与会计有关的实践课程的比重需要提高,比如用友、金蝶在财务中的应用,大数据与可视化在会计学中的应用,企业风险分析案例等课程,为了增长实战经验使学生的实际操作能力有所进步。还要与会计领域中已经开展智能化工作的企业进行深度合作,让学生到真实的企业会计工作岗位参加实习,积累工作经验,更好地将理论与实践结合,保障学生毕业后能更好地适应智能化的工作模式。目前市场需求的会计人才与高校培养的会计人才不一致,高校可以通过调查企业对会计人才的需求方向来培养符合市场需求的会计人才。同时高校还应该定期聘请合作企业的优秀财务工作者为学生开设智能时代会计知识的讲座,提高学生对智能会计工作的了解。3.开设学科交叉课程,注重复合型会计人才培养。随着移动互联网、大数据、人工智能、云计算等新技术在会计领域的应用,会计人员的综合素质必须适应市场的需要,会计人才不仅要有会计理论知识,还要掌握诸如管理学、经济学、金融学、法学、统计学、数据分析以及计算机程序设计等相关知识;不仅要具备会计业务处理能力,还要具备创新、团队沟通、组织协调、判断决策、持续学习等智能机器难以复制的能力。因此,在高校会计学专业开设学科交叉课程,培养复合型会计人才至关重要。具体做法是,在公共基础课程模块应开设人文素养、计算机编程和数理统计类课程,对学生进行厚基础、宽口径的培养。在专业基础课程模块应开设经济管理、金融、财经法规和会计职业道德类课程,融入思政元素,培养学生一定的协调管理能力和良好的会计职业价值观。在专业核心课程模块应该增设大数据会计分析、大数据财务决策、新技术与经济一体化发展等课程。
(二)创新教学以及考核评价方式
高校要不断更新教育理念,应以学生的创造性思维为中心,努力提高学生的自主学习能力,加强培养自主解决问题的能力,实施以教以学生为本,教师主导的教学模式。可以利用互联网上的慕课、微课采用线上线下结合、小组讨论、案例分析、实践操作、竞赛等多种教学方法鼓励学生积极参与教学过程,以此增加独立思考的机会,对学生形成良好的终身学习习惯有很大的好处。同时,学习不只是结果考查,要重视对过程的评价,把对学习过程的考评比例提高。可以采用提高平时作业质量、课堂表现在课程学业成绩中的比重,还可以将学生参与小组讨论、操作演示、课后与老师互动等情况的表现纳入考核评价范围。
(三)建设应用型师资队伍
高校会计专业教师在会计人才培养中担任重要角色。智能时代下,会计工作方式发生了巨大的变化,相应的使会计学科体系的内容也出现了改变。作为引导者,高校会计专业教师应自发的地学习与智能时代相关的理论知识和实践知识。与此同时,高校也应该积极为教师提供学习新知识的渠道,可以聘请实务界人工智能专业人员为教师开设大数据、人工智能、信息技术、财务共享等培训讲座,开拓教师的视野,提升教师的理论水平;还可以分批选派教师到行业内优秀的企业进行挂职锻炼,在企业工作中了解人工智能对会计工作的改变,练习操控人工智能进行会计工作,教师要不断地学习实践来适应智能时代,为后续培养适应智能时代的高素质会计人才提供有力保障。
(四)强化职业素养教育
会计学专业是按照企业对会计人员的需求而设立的专业,满足并且符合经济社会以及会计行业的发展要求是各高校培养会计人才的首要目标。智能时代的到来,以往的会计核算能力就已经不是会计人员的核心竞争力了,对会计人员有了更高的职业素养要求。1.培养学生的管理能力。智能时代已经不再需要财务会计,逐渐变为对管理会计的需求,高校也要考虑这一点,提高学生的综合管理能力。作为一名企业的财务管理者,既要拥有一定的会计专业知识,同时还要具备沟通、团队协作、分析研判以及决策等能力。高校可以开展模拟企业管理竞赛或开设模拟企业管理课程,通过搭建标准工作流程让学生感受企业财务部门管理层的日常工作,以及管理人员的工作内容。还要鼓励学生通过参加社团和学生工作组织来锻炼自己的组织管理、团队协作和决策等能力。2.提升学生的创新意识。高校要使学生感受到良好的创新氛围,为学生搭建好创新平台,让学生积极参加“互联网+”大学生创新创业竞赛,指导学生申报大创项目。此外,教师引导学生开展科研项目,在科研中发现创新点,提高教学质量,学生的创新意识也能得到培养,开拓视野,让学生紧跟会计行业发展变化的步伐。3.加强学生的会计职业道德教育。虽然目前高校已经开设会计职业道德的相关课程,但社会上的会计造假案例仍不断出现,因此在高校还应进一步强化会计职业道德教育,从源头入手,在学生时代就要让他们了解职业道德的重要性和违反职业道德的严重的后果,树立正确的会计职业道德观,提高辨别是非的能力、抵抗诱惑的能力,自觉抵制不良社会风气,维护会计的职业尊严,促进良好的会计道德观的形成。
四、结语
智能时代会计人才培养问题已成为我国人才强国战略的重要组成部分。在人类的不断进步下,社会管理领域也会被智能科技产品一步步的占据。因此,智能时代下会计人才培养问题的研究也不是一劳永逸的,培养教育会计人才的内容也要不断进步,使智能技术不断为会计工作带来便捷。
参考文献:
[1]陈小芹.人工智能时代会计人才培养模式[J].商业会计,2019,657(09):127-129.
[2]吴媛媛.人工智能时代会计人才培养新模式探究[J].时代金融,2018,717(35):192.
关键词:人工智能;深度学习;教学建议
0引言
传统的人工智能课程主要包括人工智能导论、模式分析、机器学习、数据挖掘等。这些课程由各个院校根据专业情况不同而选择,课程的内容也有较大差别,但是,基本上都涉及人工神经网络的内容。然而在人工神经网络的教学内容上,一般只讲解经典的多层感知器和反向传播算法,或再加入一些反馈网络的内容,这种教学内容设计的一个不足是忽视了人工智能领域的最新发展——深度学习,它是近几年人工智能领域最具影响力的研究主题,并在大规模语音识别、大规模图像检索等领域取得突破。
北京邮电大学计算机学院开设人工智能科学与技术的本科专业,笔者从事深度学习的研究工作,同时承担了本科生和研究生人工智能类课程的教学工作,因此产生了将深度学习内容引人人工智能类课程的想法。本文先介绍深度学习的背景,说明深度学习在人工智能发展中的地位,之后分析了将深度学习基本内容引入人工智能类课程的必要性和可行性,最后给出了一些实施建议供探讨。
1深度学习背景
2006年,加拿大多伦多大学的GeoffreyHinton教授与Salakhutdinov博士在美国《科学》杂志发表了题为“ReducingtheDimensionalityofDatawithNeuralNetworks”的论文,该文提出一种学习多层神经网络的方法,并将这种具有多层结构的学习方法命名为深度学习(DeepLearning),而这成为深度学习研究的一个导火索,从此深度学习的研究与应用蓬勃发展起来。
深度学习在语音识别与生成、计算机视觉等应用领域取得了突出进展。近几年的国际机器学会(InternationalConferenceonMachineLearning,ICML)、神经信息处理大会(AnnualConferenceOnNeuralInformationProcessingSystems,NIPS)、计算机视觉大会(InternationalConferenceonComputerVision,ICCV)、
声学语音与信号处理大会(InternationalConferenceOnAcoustics,Speech,andSignalProcessing,ICASSP)、计算语言学大会(AnnualMeetingoftheAssociationforComputationalLinguistics.ACL)、计算机视觉与模式识别(InternationalConferenceonComputerVisionandPatternRecognition,CVPR)等都有不少相关的研究论文、会议教程和小组研讨会(Workshop)。美国国防高级研究计划(DARPA)也提出了关于深层学习的研究项目。此外,2013年6月《程序员杂志》的封面故事,采访了周志华、李航、朱军3位国内的机器学习专家对于深度学习的看法,他们一致肯定了深度学习在机器学习领域的贡献。
工业界对深度学习也寄予了很高期望。2012年6月,《纽约时报》报道了斯坦福大学计算机科学家AndrewNg和谷歌公司的系统专家JeffDean共同研究深度神经网络的机器学习模型在语音识别和图像识别等领域获得的巨大成功。2012年11月,微软公司在天津公开演示了一个全自动的同声传译系统,其关键技术也是深度学习。2013年1月,百度公司首席执行官李彦宏先生宣布建立深度学习研究院(InstituteofDeepLearning)。2013年3月,谷歌公司收购了由深度学习创始人GeoffreyHinton创立的公司。
从学术界与工业界的研究态势看,深度学习已经成为机器学习与模式识别,乃至人工智能领域的研究热点。正是在这样一个背景下,人工神经网络重新回到人们的视野。此前人工神经网络的发展大致可以分为两个时期,1943年,McCulloch和Pitts提出了最早的人工神经元,这种神经元具有学习能力,这是人工神经网络的发端,也可以被认为是人工智能的发端(当时还没有人工智能这个术语)。1949年,Hebb提出了Hebbian学习算法。1957年,Rosenblatt提出了感知器的神经网络模型。1969年,Minsky和Papert分析了这种感知器神经网络模型的局限性。然而,很多研究者认为,感知器的这种局限性对于所有的神经网络模型都适用,这使人工神经网络的研究很快暗淡下来。1980年代中期,诺贝尔奖得主JohnHopfield提出了Hopfield神经网络模型,这种Recurrent神经网络具有的动态性有可能用于解决复杂的问题。同时,多层前向神经网络的后传算法也被重新发现,这两个工作使人工神经网络得到重生。这时,人工神经网络已经成为人工智能的一个重要组成部分。但是,在随后的研究中,人们发现,当学习多层神经网络包含更多的隐藏层时,后传算法并不能学到有效的网络权值,这使得神经网络的研究再次陷入低潮。此次以深层神经网络为代表的深度学习重新回到研究的舞台,其中一个重要因素是Hinton提出的逐层预训练神经网络方法治愈了多层神经网络的一个致命伤。
2必要性与可行性
深度学习的发展使得从事教学一线的教师也无法忽视这个颇具影响力的研究主题。为此,我们提出将深度学习这个主题引入到人工智能类课程中,将它作为课题教学的一部分。
2.1必要性
将深度学习这个主题引入到人工智能类课程中的必要性主要包括如下4点。
1)深度学习是人工智能的前沿。
2006年以来,深度学习的研究席卷了整个人工智能,从机器学习、机器视觉、语音识别到语言处理,都不断涌现出新的研究工作和突破性进展。深度学习不仅在机器学习领域成为研究热点,同时在多个应用领域也成为有力工具,而且,在工业界的系统应用中,深度学习成为其中的关键解决技术。
2)深度学习是人工智能的突破。
深度学习的发端是神经网络。关于神经网络的论述,在人工智能类常见教科书中还停留在多层神经网络,即神经网络的第二阶段,它们大部分描述多层结构无法训练的现象。但是,从深度学习的角度看,深层神经网络不仅可学习,而且有必要,这与第二代神经网络的观点是完全不同的。深度学习突破了原有人工神经网络的认识,超越了人工智能神经网络教科书中的原有内容,因此,有必要将多层神经网络结构的可学习性告知学生,从新的视角纠正原有的观点。
3)深度学习是人工智能的延伸。
深度学习不仅提供了一种可以在深层神经结构下训练网络的方法,也包含了不少新的内容,是人工智能的新发展,为人工智能补充了新的内容。到目前为止,深度学习至少包括:从生物神经网络与人类认知的角度认识深层神经网络的必要性;如何构建和学习深层学习网络;如何将深层结构用于解决视觉、语音、语言的应用问题;如何看待深度学习与原有的机器学习方法,如流形学习、概率图模型、能量模型的直接关系;深度学习与其他学科的关系等。
4)深度学习是学生的潜在兴趣点。
大学生对知识有着强烈的好奇心,加之当前信息技术的发达,部分对智能感兴趣的学生可以从其他途径了解到这个学科发展的前沿。因此,顺势而为,将深度学习这个主题做具体讲解,满足学生的好奇心,培养他们对学科前沿与发展的认识,是十分必要的。对高年级的学生而言,了解深度学习的基本知识,是他们全面认识人工智能与发展前沿的一个途径,而对于研究生,较多地了解和掌握深度学习的基本知识有助于他们研究工作的开展。
基于以上几点,笔者认为,将深度学习这个主题引入到人工智能类课程中非常有必要。深度学习作为人工智能的前沿,既是对人工智能原有理论和技术的一个突破和补充。
2.2可行性
将深度学习引入到人工智能类课程中的可行性主要包括如下3点。
1)深度学习与现有人工智能联系密切。
深度学习并不像突兀的山峰拔地而起。而是深深植根于原有的人工智能理论与技术。深度学习是以神经网络为出发点,这正是深度学习教与学的切入点。比如,可以通过对多层感知器隐藏层的增加和后传算法的失效来讲解深度学习是如何解决这个问题的。再者,深度学习的一个核心构建“受限波尔兹曼机(RestrictedBoltzmannMachine)”,可以被认为是一种能量模型,而这种模型与Hopfield网络都可以从物理学的能量模型角度分析,RBM可以认为是Hopfield网络的随机扩展。总之,深度学习与现有人工智能的联系,使学习深度学习变得容易。
2)深度学习的基本内容并不深。
深度学习有个很好的名字,这个名字恰当地描述了特定的学习结构。比如,深度学习的核心部件受限于波尔兹曼机RBM,其结构非常简单。从神经网络的角度,受限波尔兹曼机是一种随机的双向连接神经网络,信号可以从可见层传递到隐藏层,也可以从隐藏层传递到可见层。网络中每个节点是具有特定结构的神经元,其中的神经元具有典型的包含自身偏置的Logistic函数的随机单元,能够依Logistic函数计算得到的概率输出0状态或1状态。概括地说,深度学习的基本内容在高年级阶段较易掌握。
3)深度学习的资料容易获得。
当前的信息资讯非常发达,有相当多的资料可以通过互联网等多种途径获得,这使学习深度学习成为可能。近期,中国计算机学会主办了多个技术讲座均涉及深度学习的部分;深度学习的创始人Hinton教授的主页也有很多资料;Coursera网站有免费的Hinton教授的神经网络课程;斯坦福大学的Ng教授提供了很多的在线教程;蒙特利尔大学Bengio教授发表的题为“LearningDeepArchitecturesforAI”的论文也是这领域的优质资料。
3实施建议
在具体的教学过程中,笔者建议适当安排深度学习的最基本内容,内容不宜过多,也不宜占用过多的学时,可以根据教学对象的不同进行调整。比如,本科生的高年级专业课可以安排1学时的教学量,介绍层次训练的基本算法;也可以在高年级前沿讲座中安排2学时,内容覆盖面尽可能广泛。在研究生的教学中,可以根据教学的课程主题安排内容与学时。比如,神经网络主题的课程可以安排4-6学时的教学内容,包括波尔兹曼机及学习算法、深层信念网络与学习算法、深层波尔兹曼机与学习算法卷、积神经网络、自动编码器等。结合应用,课程还可以包含MNIST数字识别的应用、人脸识别的应用、图像检索的应用、语音识别中的应用等。另外,深度学习是一个实践性很强的研究,随机性:大规模(意味着数据不宜可视化,程序运行时间长)等多种因素混合,使深度学习在学习中不容易理解。为此,可以在条件允许的前提下,增加小规模的实验,辅助理解。最后,课件可以通过对优质资料做修改得到。
关键词:智能楼宇;弱电系统;规划;实施;课程;开发;实践
中图分类号:TPG424文献标识码:A文章编号:1009-3044(2010)20-5548-03
随着社会信息化进程的加快,我国已形成了全球规模最大、发展最快的智能建筑市场,广阔的市场潜力为智能建筑的发展提供了巨大机遇,同时也面临着智能建筑工程技术人才不足的问题。为此,计算机系统集成公司由网络系统集成向智能化楼宇弱电方向发展,公司除了获得信息产业部等级资质外,还获得建设部有关楼宇弱电的等级资质。为适应计算机系统集成公司的转型,满足企业发展对智能楼宇弱电工程技术人员的需求,我院计算机应用技术专业于2004年转向智能楼宇弱电技术专业方向。
《智能楼宇弱电系统规划与实施》课程是本专业的一门核心课程,下面就本课程的开发和实践作一介绍。
1课程建设思路
1)校企合作共同制定工学结合人才培养方案;采用调研、归纳、排序、重组四步法设置系统化专业课程体系。
2)校企共建课程的资源与教学平台,合作进行基于智能楼宇弱电系统项目工作过程的课程开发;进行学习领域、学习情境、学习任务三层教学设计;按资讯、决策、计划、实施、检查、评价六步法组织教学。
3)在校内,以校企共建的智能楼宇新型实训室为教学环境,实施六步法中资讯、决策、计划教学;在校外,依托工学结合顶岗实习中企业在建弱电工程项目实施六步法中实施、检查、评价教学。
2课程设置
根据企业对专业人才的要求,计算机应用技术专业人才培养目标为培养适应社会主义现代化建设需要,德、智、体、美全面发展的,具有创新精神和较强实践能力,具备本专业必需的专业能力、方法能力和社会能力,能从事智能化楼宇弱电系统工程规划实施、施工管理,综合布线、弱电设备的安装、调试、验收与维护,弱电系统管理软件的安装、调试、维护与开发等工作的高素质技能型专门人才。
课程组总结已经积累的课程开发经验,借鉴系统化课程开发方法以及其它先进的教学理念,深入学习国内基于工作过程课程开发的最新成果,采用调研、归纳、排序、重组的专业课程开发方法,形成以工作过程为主导的专业课程体系。计算机应用技术专业课程开发方法如图1所示,计算机应用技术专业课程体系如表1所示。
《智能楼宇弱电系统规划与实施》课程主要介绍智能楼宇弱电系统工程规划及视频监控、入侵报警、门禁管理、楼宇对讲等子系统工程实施技术,用于培养学生就业岗位中智能楼宇弱电系统规划与实施能力与职业素养,并与工学结合顶岗实习紧密结合,为学生打下良好的操作技能基础。因此,《智能楼宇弱电系统规划与实施》是计算机应用技术专业的专业核心课程。
本课程是建立在智能楼宇弱电设备安装与调试、智能楼宇综合布线、智能楼宇供配电等课程基础上的综合性专业课程,与工学结合顶岗实习同步展开教学。非工作日在校内多个智能楼宇实训室完成智能楼宇弱电系统分析、施工准备部分的教学;工作日选择多个顶岗实习合作企业在建典型工程,在工程现场展开教学,完成工程实施和检查评价的教学。
通过课程学习使学生能根据智能楼宇弱电系统工程项目的需求进行调研及可行性分析(资讯),进行系统的初步规划(决策),工程中标签约后进行深化设计,绘制出相应的施工图纸(计划),进行设备材料的采供,综合布线,设备的安装与调试(实施),最后根据功能和规范要求对系统性能进行测试(检查),完成项目的竣工验收(评价)。教师通过资讯决策计划实施检查评价六步法教学,使学生掌握弱电系统及各子系统的分析、规划、施工和验收的方法。专业知识教学目标与能力培养目标如下。
1)理解弱电工程的基本概念和弱电工程实施流程;2)掌握弱电工程项目的分析、规划、施工、检测和验收方法;3)掌握视频监控系统、入侵报警系统、门禁管理系统、楼宇对讲系统工程施工准备和具体施工过程及其注意事项;4)了解弱电工程相关子系统的验收规范和流程,初步具备弱电工程项目的分析、选型配置、实施和验收能力;5)具备视频监控、入侵报警、门禁管理、楼宇对讲系统工程的实施能力。
3教学内容设计
按基于工作过程的课程开发方法,课程教学内容设计是通过学习情境设计和学习任务设计来实现的。
3.1学习情境设计
计算机应用技术专业就业岗位之一是“智能楼宇弱电系统的规划与实施”,根据基于工作过程的课程开发思路,针对工作岗位典型工作任务的工作过程,建立“智能楼宇弱电系统工程规划”、“视频监控系统工程实施”、“防盗报警系统工程实施”、“门禁管理系统工程实施”、“楼宇对讲系统工程实施”五个学习情境作为本课程的教学内容。本课程中每个学习情境的名称与学时如表2所示。
对每个学习情境应制定教学设计卡,包括学习目标、教学实施方案、所需设备对象与使用工具、教学重点、考核与评价标准等内容,采用资讯、决策、计划、实施、检查、评价六步教学法进行课程教学。
在每个学习情境课程的教学中均要介绍系统的组成原理,并让学生通过资讯、决策、计划、实施、检查、评价学会智能楼宇弱电系统的规划与实施工作,使学生具备一定规划与实施工作的能力,为学生可持续发展奠定良好的基础
3.2学习情境中的学习任务设计
遵循学生职业能力培养的基本规律,以智能楼宇弱电系统规划与实施典型工作任务的工作过程为依据,整合工作过程知识,设计学习任务。
每个学习情境由若干学习任务构成,如“智能楼宇弱电系统工程规划”学习情境由“智能楼宇弱电系统分析”、“智能楼宇弱电系统规划”、“智能楼宇弱电系统工程实施”、“智能楼宇弱电系统工程验收”共4个学习任务构成,学生完成这4个学习任务,即经历了一次智能楼宇弱电系统工程规划与实施工作过程。
学习领域课程中学习任务的教学是通过学习任务设计卡与学习任务书来完成的。在上课前教师要编写各项学习任务的学习任务设计卡及学习任务书,课堂上必须按课程学习任务设计卡中的学习目标组织教学,下放学习任务书,明确本次课的学习要求,指导学生实训,完成本次学习任务,并按考核标准对学生任务完成情况进行考核。
学习任务设计卡包括学习任务及所属学习领域和学习情境、学习目标、教学设计与组织、学习重点与难点、考核标准、使用实训设备等内容。
学习任务书由任务名称、任务描述、任务要求三部分组成,学习任务书中必须明确学习任务内容与要求,任务书下发到学生手中,学生将按要求完成本单元学习任务。
4教学组织安排
本课程以多个智能楼宇新型实训室和工学结合顶岗实习工程项目为载体,对每个学习情境按资讯、决策、计划、实施、检查与评价六步法组织教学,把校内理论教学和校外实践性教学有机结合起来,把工学结合顶岗实习和工程现场教学内容结合起来,把竣工工程案例的分析比对和在建工程项目的工程规划实施教学内容结合起来。在本课程的教学过程中,课程教学六步法实施中前三步资讯、决策和计划学习任务可利用双休日,学生集中在校内实训室完成,教师讲解学习情境中的系统组成、系统工作原理、系统规划、工作任务要求、考核标准等,学生利用业余时间完成对系统的组成和规划的资讯工作;学生在工作日参加顶岗实习企业的在建工程实施过程,在工程现场完成教学中的工程施工准备、工程施工以及工程验收学习任务。教学组织安排如图2所示。
5教学方法
5.1学习情境六步教学法
本课程选取智能楼宇弱电系统规划及其视频监控、入侵报警、楼宇对讲、门禁管理四个子系统的工程实施作为五个学习情境,对应于智能楼宇弱电系统典型工作任务的工作过程,对每个学习情境课程采用项目式教学法。如:将视频监控系统工程实施作为一个工程项目案例,再将工程项目的分析、施工准备、施工、检测和验收作为学习情境中的若干学习任务,按资讯、决策、计划、实施、检查、评价六步法进行学习情境教学,每个学习情境下的任务教学的开展都采取以学生为中心,教师辅助指导的任务驱动式教学方法。
5.2智能楼宇新型实训室和工学结合顶岗实习工程项目教学法
本课程以智能楼宇新型实训室及工学结合顶岗实习工程项目为载体,采用教、学、做结合现场教学法。如“视频监控系统工程实施”选择某质检局的在建视频监控系统作为一个工程项目,视频监控系统分析和视频监控系统工程施工准备学习任务在学校智能楼宇新型实训室进行,而视频监控系统工程施工和视频监控系统工程验收则在学生工学结合顶岗实习工程现场进行,使学生能真实体验一个工程项目规划与实施的整个过程。
5.3校内理论教学与工程现场教学结合法
关键词:人工智能;教学改革;学习心理;考核方式
中图分类号:G642.3文献标志码:A文章编号:1674-9324(2012)06-0152-02
虽然人工智能的发展历史只有五十余年,但它已经广泛应用于专家系统、机器翻译、图像处理和机器人技术等领域。随着人工智能技术对社会经济发展的影响不断增大,人工智能课程不再是计算机专业独有的专业课程,国内外很多高校在自动化、智能交通等专业都开设了选修课,甚至在高中的信息技术课程中也在推广设置。吉林大学硕士专业“模式识别”将《人工智能》设为专业学位课程,同时也将其设为汽车、机械等其他学科的选修课程。由于研究生相关基础知识水平参差不齐,课程内容又比较抽象、生涩,为了提高教学质量,在本次教学改革过程中充分考虑学生学习新知识的心理演变过程,认真研究教学内容、教材、教学方法等诸多方面,力求在教授基本原理的同时,培养学生对智能系统进行理论分析、设计并编程实现的能力,为后期的论文研究阶段打下坚实的基础。本次教学改革受到了吉林大学研究生课程体系建设和核心课程建设项目的资助。
一、教学内容
教学改革的关键是教学内容。人工智能与统计学、心理学、语言学、计算机科学、生物学、控制论等都有交叉关系,学科涉及的内容十分庞大。人工智能学科知识的繁多与授课学时有限之间的矛盾比较突出。作为国内模式识别专业的领军院校,如中科院智能所、清华大学、上海交通大学和南京理工大学等,他们所开设的《人工智能》课程学时和内容也不尽相同。我们参考了上述院校的授课内容,同时考虑到本校本学科的学术研究方向,精心归纳、优化教学内容,力争做到教学内容系统、精炼和实用。目前,我们讲授的教学内容主要包括:智能化智能体系统、盲目搜索方法、启发式搜索方法、局部搜索方法、约束满足问题、博弈树搜索方法、知识表示方法、不确定知识与推理、规划与机器学习等,共40学时。
另外,人工智能领域中新问题、新理论交错涌现,这就要求教学大纲要定期修订,教学内容要及时更新,同时教师也需要不断提高自身的学术水平,以便提高硕士课程的研究性内涵。
二、教材选用
要搞好课程建设,教材是一个很关键的问题。我们广泛阅读和研究了国内外的经典教材,经过一番斟酌之后,我们选用了StuartRussell和PeterNorvig所著的《人工智能-一种现代方法(第二版)》。首先,选用国外教材能够更快地追踪最新研究成果。同时该教材已经被世界上900多所大学采用,符合促进高校的教学内容向国际水准靠拢、与国际接轨的理念。另外,人民邮电出版社在2002年曾经出版该书的英文版的第一版,双语学习能有助于提高学生的英语水平,为学生后续的查阅英文文献,甚至发表英文文章奠定基础。
三、教学方法
在国内,比较有影响的是中南大学以蔡自兴教授为首的教学团队为计算机科学与技术本科专业开设的人工智能课程,该课程在2003年被评为全国高等学校首批精品课程[1]。2007年该课程又开始进行全国双语教学示范课程建设,成绩斐然[2]。多年来,我们不断汲取同行的成功教学经验[3],结合本学科的硕士专业特点、考虑学生的知识结构和实践能力,不断改革和尝试,总结了一套行之有效的教学方法。我们一切以学生为主体,在教学过程中充分考虑学生学习新知识的心理演变过程,采用灵活多变的教学手段。让学生从感兴趣,保持兴趣,到收获用所学知识解决实际问题的成功喜悦,并进一步增强投身于科研论文研究的热情。
课程伊始,通过多媒体演示人工智能技术已取得的杰出成就,激发学生的学习兴趣。然后布置学生查阅资料,列举人工智能发展史上的重要事件和最新研究的热点问题,课上再组织学生做报告。通过上述活动,一方面拓展了学生的专业视野,另一方面锻炼了学生的表达能力。
随着课程内容的深入,让学生组成兴趣小组,任意选择问题实例,利用每节课学习的理论、算法不断地更新该实例的解决方案,评价性能优劣。学习小组可以培养学生科研协作的精神。另外,课堂上每组轮流做报告阐述各自的研究进展,演示编程效果。其他同学或给出修改意见,或提出个人观点。最后老师及时总结,引导学生提高分析问题的深入性和广泛性。充分的课堂讨论能够提高学生多角度思维的能力,培养学生善于钻研和勇于创新的精神。同学间的这种学术交流也可以让学生有机会了解彼此的学习状况与能力,促进学生展开良性的学习竞赛,也为学生接受和理解老师最后给出的课程成绩做了心理铺垫。老师总结时要对学生的努力多肯定,激发他们的学习热情和潜能,让他们感到学习知识的快乐。
四、考核方式
实践表明笔试测验的方式不能全面反映学生的学习情况,所以本课程尝试采取自选实验设计题目,根据实验报告、上机演示结果和口试等方式综合评定成绩。其中,实验报告要求学生根据实验题目详细介绍设计思路,阐述编程方法,分析实验结果。口试是老师当场就报告中的问题提问,并对学生的回答进行讲评。课程成绩中,实验报告设计分析占60%,上机成果演示占30%,口试占10%。
通过实验设计的考核方式,学生的学习积极性得到了很大的调动,充分发挥了学生的自主创新能力,锻炼了学生知识综合应用技能。但美中不足的是该方式不像笔试那么客观,学生的成绩容易受教师的主观性影响。另外,人工智能作为一门学位课,其成绩往往直接影响学生的奖学金评定,学生和相关领导对成绩的评定原则十分关心和重视。为了减少人为因素对学生成绩的干扰,避免师生因课程成绩产生分歧,我们规定了完善的考核细则。考核细则发给同学,作为实验报告的首页,方便记录每一个环节上学生的得分情况,做到成绩评定有据可查。
非笔试的成绩评定方式对任课教师的要求也提高了,我们教师团队还规定了详细的教师工作守则。首先要求教师认真细致地阅读学生的实验报告,给出报告得分,并准备口试时提问的问题,得分和问题都要在实验报告的首页做好记录。询问每个同学的问题都不能重复,上机演示和口试环节都是公开的。问题可以是设计不合理的思路,或是阐述不清的步骤等,教师要注意掌握问题的数量,尽量做到均衡。上机演示时,学生经常因为紧张而漏掉部分功能的演示,因此,教师要跟学生加强沟通。口试时,根据学生的状态,可以给予适当启发,但要在成绩评定上做出相应调整。经过多年的摸索,我们将上机演示按照实验报告成绩的倒序方式进行,这样有利于在口试过程中由浅入深,逐渐加深问题的难度,有效避免重复。教师评价时应严格缜密,让学生正确认识自己的设计水平,对课程成绩的认定跟老师达成一致。
经过教学团队的不懈努力,“模式识别”专业的“人工智能”课程建设在教学内容、教学方法、教材选用、考核方式等方面的研究都取得了一些成绩,教学实践表明教改措施已见成效,教学质量有了明显提高。
参考文献:
[1]刘丽珏,陈白帆,王勇,余伶俐,蔡自兴.精益求精建设人工智能精品课程[J].计算机教育,2009,(17):69-71.
关键词:大学计算机基础;教学改革;人工智能;智慧课堂
云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2022年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。
1传统教学的缺陷
⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。
2新人工智能环境下对计算机基础课程改革的具体方案
2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。
3结束语
【关键词】智能建筑设计与维护教学与实践
中图分类号:S611文献标识码:A
智能建筑(IntelligentBuilding)其技术基础主要由现代建筑技术、现代网络技术、现代通讯技术和现代控制技术所组成,运用自动化、通信、信息技术等智能化手段,通过将建筑物的结构、系统、服务和管理根据用户的需求进行最优化组合,是集现代科学技术之大成的产物。从而为用户提供一个节能高效、舒适智慧、配置更新,实用愉悦的人性化建筑环境。智能建筑具有系统集成特点,发展历史短,但涉及范围广,进展速度快,是动态和相对的概念,随着高新技术发展而不断变化。
产业信息网的《2012-2016年中国智能建筑市场分析与投资方向研究报告》显示:中国智能建筑行业市场在2005年首次突破200亿,2012年为861亿,年复合增长率为23.2%。如果未来房地产开发投资增速每年保持15%增速,如果智能化工程投资占投资额1%,那么智能化工程投资总额2013年在830亿左右,2015年为1100亿左右,2022年将达到4400亿左右。随着新一轮的经济刺激政策聚焦在新兴产业,尤其是信息产业。智能建筑作为智慧城市的细胞,发展势头很强。
教育部于2006年在土建类学科开设了建筑电气与智能化专业,希望在培养建筑类人才的基础上,加强对电气智能专业技能知识的掌握。我校以此为契机,通过大量的市场调研、着重对智能建筑解决方案的前期设计、工程施工建设到后期的运行维护,围绕建筑的全生命周期中,运行维护的费用占到全部费用的60%-70%数据分析、人才使用分析,开设智能建筑专业方向,面向建筑、物业管理行业。为与该专业的培养目标相结合,在对“智能建筑”课程教学内容设计上以建筑为平台,依照建设部2003年颁发的《建筑智能工程质量验收规范》的技术标准要求,住建部2013年《智能化系统工程运行维护技术规范》,结合《智能建筑设计标准》、《智能建筑工程施工规范》、《智能建筑工程质量验收规范》共同对智能建筑的设计、施工、验收、运维一系列过程形成规范,制定人才培养方案,基于典型工作任务的模块式课程开发,编写《智能建筑设计与维护》教材,探讨教材教法,强化智能建筑中智能弱电各子系统的原理、设计与工程实施实践。加强学生对智能化系统设计、建设、运行及维护中实践技术的传授,使本专业的同学获得对智能建筑的整体体系及系统原理的掌握。我们的课程主要包含了智能建筑中涉及到的主要内容:综合布线系统、建筑设备自动化系统、消防自动报警及联动系统、安全防范系统、通信自动化系统及办公自动化系统等。重点讲授这些智能系统的原理、组成、设计原则、工程实施及维护运行等,使学生对每一个子系统的原理、设计、建设、运行、维护等各环节都进行学习掌握,培养建筑、物业管理行业建筑智能技术方面的综合技术人员。以满足智能建筑行业不同环节对专业技术人才的需求。
《智能建筑设计与维护》课程内容包括智能建筑的基本概念、智能建筑的用户需求与基本要求、建筑智能化系统的子系统组成、建筑智能化系统的主要任务、建筑智能化系统的设计与会审、建筑智能化系统的专业协调、智能建筑的系统集成、建筑智能化系统的技术要点、智能建筑的建设管理、智能建筑的工程招投标、智能建筑的施工与调试、智能建筑的工程验收与人员培训、智能建筑的物业管理、建筑智能化系统的安全运行等。
建筑智能化弱电系统涉及的知识面广、工程性强,既要培养学生对理论知识的掌握,又要把握实践技能的学习,确实是一件不容易的事情。通过近几年的教学实践,归结的主要问题有:
(1)《智能建筑设计与维护》课程知识点多面广,增加了学生对所涉及的技术与系统掌握的难度。智能建筑弱电系统涉及到计算机技术、通信技术、自动化技术、传感器技术等,对于每一个系统,不仅要让学生掌握其原理,还需要根据用户需求进行系统的设计,因此学生就要掌握系统的构成、设备的选型,同时在系统设计、设备选型时还要考虑工程实施的具体因素。
(2)课程实践环节的教学投入,实训设备运用与技术升级、更新,教师的知识架构与实践教学的要求不匹配。学生对这种工程背景较强课程的学习理解与知识掌握难度增加。因此建立并改善专业的智能建筑综合实验室对于该课程是非常有必要的。
(3)课程考核所涉及理论知识、实践技能的考核无法展示学生处理工作现场各方面及各种问题的能力,无法完整体现出课程的工程实践背景。
(4)学生理解《智能建筑设计与维护》课程所涉及的一些设施与设备还可能看不到、摸不着。学生在教学实践中无法切身体会,影响学生的学习兴趣与主动进取。
教学实施与改进:
1、紧密结合智能建筑行业发展需要,不拘一格提升教师素质。
结合智能建筑专业课程体系建设需要、人才培养要求,分析《智能建筑设计与维护》课程教与学全过程,根据学院当前本专业建设现状,以师资队伍建设为重点,改善本专业教师的知识架构,实行多条腿走路,分几步落实,聘任本专业专职教师、校内兼职教师、校外兼职教师。
《智能建筑设计与维护》课程专业实践性强,切忌闭门造车,可以考虑聘请校外兼职教师,将智能建筑专业领域业内专家、其他大学相关专业教授、建筑公司负责人、建筑行业协会负责人、系统及技术运维负责人聘为客座教授或者教师。通过举办专题讲座或者授课,鼓励一些相关专业的中青年教师转行,到国内重点大学相关专业进行单科进修,改善行业专业人才运用与学院人才培养效果。
2、以就业为导向,以教学改革为抓手,坚持职业能力培养为目标
(1)深化“工学结合、校企合作”的人才培养模式
通过开展企业交流与合作,与行业企业建立紧密联系,校企合作共同确定本专业人才培养目标,构建基于工作过程系统化课程体系按照工作过程系统化思想及开放性开发方法,重构工学结合、能力本位的课程体系。
(2)通过构建企业岗位认知、理论实践一体化情境教学、校内生产性实训、校外顶岗实习的完整教学环节,依据“学生培养重在职业能力、内容选择基于工作过程、教师结构趋于专兼结合、教学环境模拟职业场所、教学方法遵循职教规律”五大核心理念进行教学情境设计,实现职业能力的递进与工作过程的结合。
(3)教学项目实施设计采取:设计的学习情景单元,理论教学和实践教学都在同一实训场所完成,通过“资讯、计划、决策、实施、检查、评价”六步实施法来支撑。
(4)教学考评体系坚持:注重职业能力考核,根据任务完成、项目实施情况等五项指标综合评定。
实践教学与效果:
1.优化课程结构,增强课程设置的专业性和针对性
依照高职教学“必需、够用”的原则,结合智能建筑专业行业企业人才使用需求,调整课程体系与教学内容,增加实践教学课时,构建适应学生个性发展的人才培养模式。
2.改进课程考核方式,帮助学生在知识与能力等方面得到较全面的发展。
通过改革教学方法和考试方法,除笔试外,还包括口试(日常提问记录)、笔记、制定工作任务各项目的独立作业、现场测试、实际操作等多种综合考试形式,着重考核学生综合运用所学知识、解决实际问题的能力和对所学知识的综合归纳总结能力。
3.落实好教学实训实习实践过程三阶段工作。
(1)实训实习实践前(计划准备):制订实训实习实践方案;公布实训实习实践的行业企业用人要求;宣传动员,学生结合实训实习实践岗位,拟订实习计划;有针对性地进行三方面教育:一是目的性教育;二是责任、义务和权利教育;三是安全教育等。
(2)实训实习实践中(过程监控):职业道德教育、企业规章制度教育、岗位技术知识运用、操作工艺、技能训练;教师现场指导学生作业;教师和企业指导学生撰写业务报告(技术小结和业务总结报告);教师和企业共同对学生进行考核。每个同学按照所领取的任务在确定的岗位,按要求完成课题和规定的作业文件。
(3)实训实习实践后(评价总结):评价、总结、交流和表彰。
经过多年来对《智能建筑设计与维护》课程的实践教学,逐步探索对课程教学内容及教学方法的改革。加强教学内容的更新,适应建筑智能化技术的发展;同时,加强教学方式及手段的创新,积极建设小型实践平台;最后,完善考核环节,注重理论与实践并重。
注重围绕课程体系建设师资队伍,任课老师一直从事智能建筑中相关弱电子系统的实践教学,并承担企业项目生产的技术组织、工作,比如安全防范系统、综合布线系统等,不仅参与这些系统的方案设计与方案评价,而且还到工程现场进行技术指导,积累了丰富的工程实践经验。
结合智能建筑专业技术运用,开展对一些系统的理论问题进行研究,比如视频监控中的智能视频分析、人脸识别等。教师能够很好地结合实际工程案例,在课程理论内容授课时,对案例涉及到的典型系统应用来讲解涉及的系统原理、设计思想及工程实施。并运用实际项目中遇到的问题及一些小的故事来活跃课堂氛围、激发学生兴趣,并对工程中遇到的可以提升为学术问题的困难传递给同学,让他们多思考,学会从工程中提高分析问题解决问题的能力和思路。
比如通过建设社区的安保系统来讲解智能建筑中的安全防范系统的视频监控、门禁系统、自动报警、安检等内容,同时讲授安保系统应用的一些新的智能技术比如射频识别技术、人像比对及定位技术等。通过将教师的技术成果融合到平时的教学工作中去,工作促教,项目帮教,教与学促进,加强教学内容的更新与活力,激发学生的学习兴趣。
智能建筑的蓬勃发展是社会进步和科技发展的一个体现,为智能建筑的良好建设、运行与维护提供专业的技术人才是我们高等教育教育的本职工作。本文从一个非建筑类工科专业开设智能建筑课程的角度,阐述了我们课程建设的思路以及对该课程实践教学方法的一些探索,希望对非建筑电气与智能化专业培养智能弱电系统相关专业人才提供一些参考。
【参考文献】
[1]陈富川.建筑智能化系统集成研究设计与实现《电子科技大学》2008年
[2]林建军,金炳尧.基于项目的实验室工作室模式的探索与实践[J].实验室研究与探索,2012,31(5):111-113
[3]高建华,胡振宇.物联网技术在智能建筑中的应用《建筑技术》2013年02期
作者简介: