首页 > 范文大全 > 计划安排

超高层建筑结构设计要点(6篇)

发布人:收集 发布时间:2024-01-18

超高层建筑结构设计要点篇1

关键词:高层建筑发展展望

一、我国高层建筑结构发展的特点

1.建筑高度不断增加

新中国成立以前,我国具有代表性的高层建筑有22层高的上海大厦、24层高的上海国际饭店等;新中国成立后,建成了27层高的广州宾馆、114米高的广州白云宾馆;从20世纪80年代到上世纪末,高度超过150米的建筑更是高达100多栋;而截到目前,超过150米的高层建筑则多达200多栋,不少新建的建筑高度将超过600米。由此可见,我国高层建筑的高度在不断增加,这不仅一再突破高层建筑高度极限,而且带动了整个建筑行业的发展,代表着我国经济的飞速发展。

2.建筑结构复杂程度不断提高

各类高层建筑在发展过程中不仅高度不断增加,而且面对新时期客户需求程度不断提高,这要求高层建筑的建筑功能在建筑艺术和建筑造型等方面能够不断创新,只有这样,才能够更好地适应社会发展需求。随着我国国民经济发展的不断迅速,高层建筑物的个性化体现程度在不断提高,如楼板与外框结构仅通过若干点连接等。这些设计复杂的建筑物在理论上都超出了现行的设计标准,在以往的建设经验中都是没有的。特别是对于抗震的要求,需要在建筑物建设过程别考虑。在台风频繁的地区,还要充分考虑台风的因素,只有这样,才能够更好地应对新时期的发展需要。

3.机构以中钢―混凝土混合为主

国外的高层建筑结构多以纯钢结构为主,我国高层建筑结构则以中钢―混凝土为主。据不完全统计,在超过300米高的建筑中混合结构占到了三分之二以上,许多建筑结构为钢筋混凝土核心筒,外框为钢混凝土框。一方面,既保留了钢结构的技术优势,又保留了混凝土造价低廉的特点。另一方面,我国人力成本较国外较低,相比于纯钢结构采用混合结构更加具有经济方面的优势。

二、探究国内高层楼宇框架和设置标准

1.标准准则设置

20世纪90年代初,国内高层楼宇发展步入高速阶段,以往国家很少接触到建设高层楼宇,基于引领国内的建筑框架探究,1989年8月我国有关单位执行了《钢筋混凝土高层楼宇框架筹划与动工准则》,限定了高层居民楼宇钢筋混凝土内部框架至少为9层以上,并严密限定了高度的总体范畴:非防震区域或设防烈度6度时醉倒140m,设防烈度为7度时醉倒90m,设防烈度为8度时醉倒50m。之后的高层楼宇不断建造,1994年了《钢筋混凝土高层楼宇构成设计与动工准则》,决定将可行范畴上调至底部大领域剪力墙和筒体构成,可行高度也提升至190m。之后我国又出现了很多高层楼宇,所以国家在2003年了《高层建筑混凝土构成技术准则》:(1)加入了混凝土&钢混杂框架还有筹划繁杂高层楼宇框架的相关准则;(2)加入了最高等级防震的运算和建造对策;(3)加入了剪力墙――板柱的框架、具备诸多关系于短肢剪力墙的剪力墙框架的设计准则。

此外,出于维护建筑框架设计品质的宗旨,就那些特别的不满足标准条件的高层楼宇来说,由国家当局行政管理单位召集专业人士并设立审核委员会开展特别性调查,需要符合审核标准才能执行。根据我们的粗略计算,国内已审核了1000栋左右的高达120m以上的超级高层楼宇项目并合格通过。抗震设防专属性审核,能够给有关科技进步带来足够的证明,进而推动楼宇科技的进步。开展繁杂及超越性框架设计时,不再拘泥于“小震不损、中震能补、强震仍立”,所运用的证明和强化举措展现了以功效为基础的防震筹划理念。在审核超级高层防震性的时候,大量使用了中震弹性设计、模型振动台试验、大震驱动力弹性力解析、繁杂关键点解析与试验等全新的设计理念和解析、试行方法,使得其框架更稳固,提升我国的设计水准。

2.高层楼宇构成的设计探究

就防震探究事宜而言,基于国内高层楼宇大量使用了繁杂外形及融合性框架的特性,我国有关研究所、大学都开展了很多试行探究。借鉴震动台试行及模型静力试验,且使用多种电脑解析程序开展统计解析事务,达到了有关强化层、切换层、外形收缩、一体化构成等繁杂高层建筑构成的探究使用,给国内繁杂的高层楼宇设计带来了论证依据。在探究高层楼宇的进程中,开展了几百幢实际项目的模型震动台试行探究事项。经过试行宏观范例振动平台,观察框架的抗击震动功效,对比较虚弱的结构位置进行有宗旨性的强化性对策;很多项目开展了大幅度的部件、关键点的试验探究,基于验证框架设计的稳固性,并给设计带来了考证。

三、对我国高层建筑结构发展的展望

我国的高层建筑及超高层建筑具有超大功能、复杂程度高、设计水平高的特点,其规模和复杂程度在国际上都是具有非常高的水平的,并且新时期许多建筑物更是超过了现行的相关技术标准。在新的发展时期,高层建筑物还是必须在安全性着手,首先要在高层结构抗震设计理论和方法方面进行重点研究,使所开发的高层建筑物能够具有更强的抗震能力,要对结构的倒塌过程进行详细的试验,对安全性进行重点研究。其次要加强对高层建筑物结构隔震减振空制技术进行研究。当地震及台风来时,如何有效避免地震及台风对高层建筑的损害是非常值得研究的理论课题,特别是在隔震支持的抗拉问题上,更值得深入研究。最后要加强对高层混合结构的研究。通过建设更稳固的钢结构混凝土,使高层建筑物可以更好地发展对于我国社会经济具有非常重要的作用与意义。

参考文献:

超高层建筑结构设计要点篇2

【摘要】:按我国的最大适用高度,从室外地面算起,凡超过了B级高度建筑180m的最大适用高度均被称为高层超限结构设计。本文针对建筑高层超限设计进行具体分析以及提出相应的措施与大家共同探讨。

【关键词】:建筑结构超限设计措施探讨

一、高层建筑超限结构的特点分析

由于根据超限建筑物本身进行构建有利的特点而言,一般采用常规的钢筋混凝土结构就能解决问题,就不需采取钢结构或者钢-混凝土组合结构等在超高层常用的类型。但由于采用钢筋混凝土,结构自重较大,周期较长的特点,一般建筑应用中根据结构本身的特点。可自行选择采用何种结构。

另外,根据工程自身的指标,如果采用框架——核心筒结构体系即可满足刚度和受力要求,就不需采取加强层、蒙皮或巨型支撑等特殊的手段。在常遇地震和风载作用下,最大层间位移角为Y向的设计时要大于规范限值(1/500)。

如果采用核心筒结构体系,应避免减少刚度偏心,设计上注意核心筒设计的刚度要求;整体偏向左侧,为提高结构抗扭刚度,在不影响建筑功能的情况下,整个框架梁的均值应加高至900。为尽量减少刚度差异过大而给结构抗震带来的不利影响,设计时应考虑满足对刚度指标的需求。

二、高层建筑超限设计分析的主体因素

1、基于性能的抗震设计方法,是否能够满足抗震性能目标

小震作用一般采用规范规定的振型分解反应谱法或者弹性动力时程法对结构进行计算分析,中震一般采用弹性计算并采用结构构件的屈服判断分析法进行判断控制,大震采用静力弹塑性的Pushover推覆分析及动力弹塑性分析分别进行计算,以判断结构是否达到“小震不坏、中震可修、大震不倒”各阶段相应的抗震目标。

2、考虑可能的风载作用控制情况,并验算风作用下舒适度

虽然风荷载作用并不属于抗震超限审查的必须项目,但基于高层超限结构工程的经验来看,由于高度较大的超高层周期较大,往往由风而不是地震起控制作用,故根据建筑结构周期的特点建议对超限设计分析时,加入风载的分析内容。具体分析指标时要分析其它一些受相邻超高层建筑物风扰影响的超高层建筑的风洞试验的结果,如根据超限结构工程可能会发生横风作用大于顺风而起控制的情况,应结合工程超限结构及体型特点,预估即使由横向风作用控制,比对应方向顺风作用的增大值会不会超出,在超限计算中,应对两个方向的风压值分别乘以1.3的放大系数进行相应的位移和强度计算,以此来考虑可能起控制的横向风作用和最佳舒适度。

3、根据高层超限结构构件和刚度需求分析温差效应

由于高层竖向构件筒体、柱截面和刚度较大,不可避免要对现浇混凝土楼盖梁板沿水平方向的温差变形产生较大的约束,从而各自产生相应的约束内力,称为水平温差效应。实际设计中主要考虑由楼屋盖中面在施工和使用时与混凝土终凝时温度的差值对结构所引起的附加内力,本工程取±15℃计算。

4、针对超限分析要考虑混凝土徐变收缩对结构的影响

徐变收缩是混凝土固有的特性,钢结构则不存在徐变收缩问题,混凝土随着作用在其上的压应力时间持续,将持续发生变形-徐变变形。一般来看。超限高层建筑由于竖向构件高度大,其徐变变形累计大,并通常伴随着收缩变形同时发生,这样两种变形的叠加,将使整个超高层建筑竖向构件后期非荷载直接引起的塑性变形达到一个量级,会接近甚至超过荷载直接引起的弹性变形而不容忽视,可能会对部分结构构件和非结构构件造成较大的不利影响,因此实践工程设计时要对混凝土徐变收缩的影响进行量化分析,评估其不利影响的程度,以判断是否需采取相应对策,以为建筑结构和非结构构件提供可靠的质量保证。

如在结构建筑钢管柱压应力水平高、内部筒体压应力水平低,弹性压缩变形为柱大、内筒处小时,连接钢管柱与混凝土内筒间的框架梁因两者的弹性压缩变形差较大而产生显著的附加内力,达到控制梁端配筋的程度,多数会出现严重超筋。因此有必要考虑采取有效可靠的施工措施,以大部分消除因内外竖向构件压缩变形差对连接框架梁产生的附加内力,使框架梁的钢筋充分贡献在抵抗荷载的作用中而不是浪费在硬抗非荷载作用产生的附加内力中。

三、高层结构超限设计中主体问题的解决措施

采用基于性能的抗震设计方法,对结构是否达到小、中、大三个阶段的抗震性能目标进行量化分析判断,在考虑竖向荷载、风和小震的作用时,采用规范方法进行计算和设计,构件基本不超筋,则可基本保证结构构件处于弹性阶段,实现小震作用时结构“处于弹性,结构完好、无损伤”的第一阶段抗震性能水准。

对中震作用,采用弹性计算,选用中震的地震反应谱曲线,计算中荷载及材料的分项系数、抗震承载力调整系数均取1.0,不考虑地震作用的内力放大调整,并取材料的强度为标准值,当这时构件的地震作用组合效应不大于按强度标准值计算的抗震承载力,则可判断构件为中震不屈服。

竖向构件及与外框柱及内筒剪力墙面内相交的主要框架梁均不出现屈服,梁均不出现受剪屈服,在小震及屈服判别地震作用1时,所有梁不出现受弯屈服;在判别地震作用2及中震时,核心筒连梁仅出现程度较轻的屈服(主要表现为面筋配筋率略>2.5%),可判断为轻微的损伤;另,右侧的边框架梁在中震下也出现轻微屈服,经将梁宽度适当加大后,即可满足该梁中震不屈服。实际设计时,将按小震和中震两者的较大值对构件进行配筋,这样则能实现中震作用下结构“重要构件不屈服,其它构件部分允许受弯屈服,可修复使用”的第二阶段抗震性能水准。

对大震作用,则可以采用相应软件对结构进行静力弹塑性分析(Pushover)及用接口程序BEPTA进行模型的前处理和准备工作后通过分析软件对结构进行动力弹塑性分析。按弹塑性程序计算所反映的塑性发展程度来对构件以至整个结构进行相应的性能评价。

针对高层超限建筑结构特点,对工程进行超限设计时,除超限审查本身所要求的抗震方面的内容外,还应对风载作用、温差效应、混凝土徐变收缩的影响、解决钢管柱与混凝土内筒间竖向压缩变形差对框架梁产生过大附加内力的对应措施等进行分析,虽然这些因素并非抗震超限审查的必须内容,但确都属于高层超限结构能否真正实施所必须分析和解决的问题。

四、总结

当进行采用软件在施工模拟进行分析中,应综合考虑在施工阶段由主体结构去承受后加的恒载、活载、风载及地震等作用,计算中同时考虑混凝土与钢管混凝土徐变收缩的等影响的诸多因素,才能确保满足高层超限结构设计的要求。

【参考文献】:

[1]兰守奇.某超限高层建筑的抗震设计审查J.低温建筑技术,2011,(7).

超高层建筑结构设计要点篇3

关键词:超限高层;建筑结构;性能抗震设计;发展方向

在科技技术飞速发展的带动下,现代城市建筑的规模日渐扩大,城市现代化的水平也逐渐与国际接轨。但是一旦城市遭遇地震,受到剧烈震荡时,建筑就可能会直接倒塌,从而造成大量的人员伤亡。因此,建筑工程的抗震设计显得极为重要,必须要对建筑工程的抗震设计进行深入的研究,尤其是超限高层建筑进行设计的过程中。

一、超限高层建筑基于性能抗震设计的目标

现阶段,我国建筑工程一般利用两个不同阶段的规范,来开展基于性能的抗震设计,从而确保超限高层建筑实现小震不坏、中震可修、大震不倒的建设目标。

1、三水准目标

三水准目标中,小震不坏是指在遇到级别不高的地震后,建筑房屋的各个部位未出现裂缝,也没有受到任何损害,无需采取修复处理等措施,房屋便可继续良好使用;中震可修指的是在遭受到具备一定破坏强度的地震,建筑物尽管受到了一定程度的破坏,但采取相应的修复处理措施后,依旧能够正常使用;大震不倒则指的是在遭受强度非常大的地震时,建筑工程尽管受到破坏,但不会发生倒塌,导致大量人员伤亡的现象。

2、两个不同阶段的设计方法

将超限高层分成两个阶段来进行抗震设计,第一阶段,可以将建筑物的抗震等级规划到小震时的性能计算,对数据参数和弹性范围进行设计,同时还可以考虑地震效应和房屋荷载效应,结合建筑物的结构特点和承载能力进行适当的调整,确定建筑构件的横截面积和尺寸大小,并且注意在发生小震时的建筑结构在弹性方面的位移力度,以此来达到小震时建筑物所能承受的强度冲击,确保建筑物的安全稳定。第二阶段,以第一阶段计算出来的结果为设计参数,进行结构材料的选择,并采取相应的抗震措施,计算出建筑物在延展和变形之前所能承受的最大力,然后在构件结构设计和材料选取中尽量提升建筑物的抗冲击能力,以保证在中震时,建筑物还能有一定的抗性变能力。

3、强柱弱梁、强剪弱弯原则

为了提高超限高层建筑的抗剪抗震性,设计其建筑结构时必须坚持“强柱弱梁、强剪弱弯”这一设计原则,基于抗震性能角度,合理布设建筑的结构形式,尽量做到刚柔并济,切实提高建筑结构的刚度和强度,防止其在地震作用下发生损坏或倒塌。

二、超限高层建筑的抗震设计要点

超限高层建筑由于受到自身结构受力性能的影响,在结构设计时必须控制好建筑的抗震性,以免其在后期使用中受地震作用力而倒塌。以下几点为抗震设计注意要点:

1、建筑结构要规则

建筑物在最初的设计阶段,抗震设计最先想到的是建筑物结构,结构设计的好坏直接影响建筑物的稳定性和抗震性。建筑物的底盘要稳,结构支撑要逐级向上,上部的承重受力要轻,减少对建筑物地基的压力,设计出来的建筑物结构要呈规则性,不仅要保证建筑物的功能,还要满足建筑物的扭转刚度。在一般的建筑设计中,建筑的外观要简单大方,整体分布要均匀一致,考虑到受力荷载的影响,结构的刚性设计要尽量增强,地基的修建也要“根深蒂固”,这才能抵抗一定的地震等级,将建筑物的损坏程度降到最低,确保人身和建筑的安全。

2、控制层间位移

在对超限高层建筑进行抗震设计时,除了要对建筑平面进行合理规划外,还要考虑建筑的高宽比、位移的控制、结构所采用的材料、结构体系、装修标准及侧向荷载等更多问题。而在这其中最为重要的便是钢筋混凝土结构的位移控制,以及根据具体的地理位置所进行的设计,要保证建筑的稳定性,实现其正常使用功能等。建筑受风力及地震的影响通常会有很大的层间位移产生,因此在设计时不仅要满足建筑的刚度,而且还要注意不能超过结构本身的承载力。

三、实施超限高层建筑抗震性能设计的方法

1、加强超限高层建筑的基础设计

超限高层建筑的危险系数较大,特别是超高的部分,在防风和抗震性能的设计环节一定要谨慎,为了保证建筑物的质量,加强基础设计是关键。建筑工程师要根据不同的高度逐层设计,保证承重力度,在同等高度的设计中也要做到材料、结构、地基和受力分配等都能大概相同,这样施工建设的建筑才有与地震抗衡的资本。

2、充分减少地震作用力的输入

在抗震设计时,应当与位移结构抗震法相结合,通过分析来制定出科学、具体的减震设计方案,确保超限高层建筑结构的形变能力达到地震发生时的形变要求。工程人员除了要验算建筑结构承载力,还需对大震发生时建筑层间的位移延性以及位移角的限值比进行严格控制,明确构件的构造需求及其变形值等。

3、对建筑的刚度进行严格控制

在结构计算表格中,超限高层建筑的刚度通常表现出周期性的规律,进而对主体结构的位移变化产生影响。因此,建筑工程人员在设计过程中,可通过对有关刚度参数进行调整,从而达到调整建筑物结构刚度的目的。例如,通过对建筑截面的尺寸、混凝土强度、剪力墙结构开洞大小、梁钢度放大系数等参数进行调整,在实现建筑刚度调整的基础上,达到有效抗震的目的。

四、超限高层基于性能设计抗震设计的发展方向

1、随着全球多元化的发展,超限高层建筑的设计理念、设计形式、施工技术以及施工材料也向着多元化发展,世界各地的建筑风格和形式都在求新求异,超限高层也不限于传统的结构模式,在结构稳定性高的前提下,各种层出不穷的建筑形式纷纷涌现,其发展的方向还会向更宽广的领域发展。

2、目前遵循的超限高层设计方法也有待提高,随着科技的进步,对建筑物的设计方法也在不断变革,使得建筑物的就够越来越复杂,对抗震性能的设计要求也越来越高,如何改善这种状况成了未来行业发展的头等大事。

3、运用计算机辅助软件进行超限高层建筑设计已经不是难事,未来还有可能出现竖向不规则或者是有加强层的建筑,运用了等效原则,将建筑物的结构看成是三维自由度模型,这就使得设计变得简单一些,对不同的建筑进行比较分析,找出一个最适合的抗震设计强度。

4、目前超限高层建筑基于性能的抗震设计的性能水平是从多层建筑引入的,虽然经过了一些细化,但其使用起来还是很难界定的,每一栋新建筑都带来新的问题,由于结构可能竖向不规则,使用位移或层间位移作为评价标准还是值得商榷的。对于基于性能的抗震设计,还有一个重要的问题就是基于建筑物全寿命的损益分析,这里就包含了更多的不确定因素,超限高层建筑的在役损伤评估、全寿命估计,以及整体造价和服役期间维修改造费用的估计等,这都需要相关学者进一步去研究。

五、结束语

综上所述,超限高层建筑在现代城市生活中越来越常见,有效解决城市居民的住房紧张问题,同时节省了土地资源,促进了建筑事业的积极、健康发展。但要提及的是,由于超限高层建筑在使用过程中很容易受到地震力影响,加之楼层过高,结构本身就具有一定的高危险性,一旦设计不当,就极容易在地震作用下发生倒塌。所以,设计者在设计超限高层建筑结构时,一定要充分考虑建筑结构的抗震性能,采取有效设计措施,切实提高超限高层建筑的抗震性能。

参考文献:

超高层建筑结构设计要点篇4

关键词:多层大跨;超长混合建筑;结构设计

建筑工程结构在施工建设过程中,最为重要的一个环节就是结构设计。想要提高建筑工程在不同时间段内具有针对性作用及功能,最大程度提高建筑工程经济效益,提高建筑工程结构设计就显得尤为重要。正常情况下,建筑工程结构主要由两个部分构成,分别为上部结构及下部结构,上部结构与下部结构相互联系,同时二者之间又相互制约。因此,建筑工程结构在设计过程中,必须从全局层面作为切入点,对建筑工程设计进行综合性分析,这样才能够保证建筑工程施工质量。

1大跨空间结构类型

在对大跨空间结构类型划分上面,从不同层面进行分析研究,所划分的类别也不同。要是从结构材料层面对大跨空间结构进行划分,主要可以将大跨空间结构类型划分为四种类别结构,分别为钢结构、木结构、复合材料结构及铝合金结构;要是从结构布置类型层面对大跨空间结构进行划分,主要可以将大跨空间结构类型划分为两种类别结构,分别为平面结构及空间结构。其中平面结构主要在外荷作用力及反力在构件内部都能够彰显出来,并且结构会将全部构件进行紧密连接。空间结构是以三维空间作为基础,进而对外部载荷进行进行接受及释放;要是从结构形态层面对大跨空间结构类型进行划分可以将大跨空间结构类型划分为三种类别,分别为面系结构、实体结构及骨架结构,可以从不同类别形态对大跨空间结构类型进行划分。与此之外,现阶段刚柔混合结构及刚性混合结构也属于常见性类别,采取抗拉伸能力及抗弯曲能力协调的方式,结合二者优势,进而提高结构性能。大跨空间结构不断是划分为什么类型,设计人员在对大跨空间结构进行设计过程中,都需要应用到不同受力构件,借助形态不同及作用不同的构件,形成一个整体空间结构。正常情况下,大跨空间混合结构由两个或者是两个以上结构体系构成,任何一个结构体系在传力及受力都应该相互平衡,并且不同子系统之间还应该相互协调,保证不同结构体系处于平衡状态之下,进而才能够有效保证大跨超长混合建筑结构稳定性能及安全性能[1]。

2大跨超长混合建筑结构设计优点

2.1力学优势。设计人员在对多层大跨超长混合建筑结构设计过程中,首先考虑的问题就是多层大跨超长混合建筑力学逻辑性,同时也是体现多层大跨超长混合建筑结构价值的主要因素。力学逻辑性在分析研究过程中,主要是分析结构构件和材料之间的关联。多层大跨超长混合结构设计过程中,需要将各种材料的性能进行结合,借鉴不同材料之间优势,进而有效提高多层大跨超长混合建筑结构稳定性能,提高结构构件刚度[2]。2.2良好刚度和稳定性。在建筑结构众多内容中,刚度是建筑结构力学主要体现形式。刚度主要表示结构在受到变形作用力影响之下,所呈现出来的抵抗力。结构刚度不仅仅需要具有一定承载力,并且还能够有效对建筑结构形态稳定性进行提升。从刚性技术层面来说,多层大跨超长混合建筑结构一共可以划分为两种类别,分别为柔性结构类型及刚性结构类型,其中柔性结构类型在正常状态下是没有任何刚度的,形态稳定性也十分低下,进而在柔性结构施工建设过程中,需要借助外力对透性结构形态进行固定;刚性结构的稳定性主要受到材料特点影响,同时设计人员在对建筑结构设计过程中,刚度应用范围十分广泛。2.3回路平衡优点。想要保证多层大跨超长混合建筑结构整体结构处于平衡状态,在结构单元和构件之间就必须具有应力回路,进而才能够有效保证多层大跨超长混合结构处于状相互平衡状态。正常情况下,混合张拉系统在应力回路上面具有重要作用,同时也能够显著提升建筑结构预应力,最大程度提升多层大跨超长混合建筑结构刚度[3]。

3多层大跨超长混合建筑结构设计方法

3.1连接式结构设计。连接式结构主要表示多亲子结构与双亲子结构在形态结构及受力结构固定条件下,根据结构受力特征及力学规定,选择针对性连接方式。多层大跨超长混合结构所应用的连接方法较多,现阶段研究人员所应用的连接手段主要分为两种,分别为单侧悬臂式连接与双侧支点式连接,这两种连接方法最为显著的差别体现在建筑结构设计方法上面。多层大跨超长混合混凝土功能及形态在越加复杂情况下,双侧支点式逐渐在多层大跨超长混合建筑结构设计内应用,属于最常见的一种设计方法。设计人员在设计过程中,想要最大程度保证多层大跨超长混合建筑设计与满足实际要求,在整体结构设计过程中,必须选择能够满足结构要求的子结构类别。3.2并列式结构设计手法。并列式结构设计手法主要表示多亲子结构与双亲子结构在相同受力情况下,不同结构之间的摆列方法。在相同受力作用之下,多层大跨超长混合建筑结构不同子系统之间力传递都是按照自身特征进行接受释放,能够借助不同子系统结构优势,做到取长补短。根据多层大跨超长混合建筑结构所具有的支点不同,可以将并列式结构设计手法划分为两种类别,分别为支撑式手法及吊挂式手法。支撑式并列主要表示弹性支点为子结构,进而对结构下部进行支撑。双亲子结构及多亲子结构全部为刚性构件,按照子结构之间功能需求,对不同子结构之间的关系进行判断。多层大跨超长混合建筑结构在设计过程中,主要是满足形态及力流方面需求。

4结束语

多层大跨超长混合建筑结构在设计过程中,主要包含三方面内容,分别为系统优化、概念设计、设计评估,在每一个设计环节上,都需要采取针对性设计方法,保证设计方法与多层大跨超长混合建筑结构设计及要求相结合。与此之外,多层大跨超长混合结构充分在现代建筑物体现出来,具有十分显著优势。

作者:陈建

参考文献:

[1]何亮.大跨度预应力混凝土桥梁施工控制技术[J].工程技术研究,2017,(1):73-74.

超高层建筑结构设计要点篇5

关键词:绿色;超高层建筑;重点;难点

近年来,越来越多的人开始关注环境问题,面对日益紧张的能源形势,在各个行业中践行绿色环保成为重要的发展趋势。随着我国建筑行业的快速发展,绿色的生态建筑设计逐渐成为建筑行业的设计方向,绿色超高建筑设计在城市建筑设计中占据着越来越重要的位置。

一、超高层建筑设计简介

超高层建筑主要是指40层以上(建筑高度在100米以上)的建筑物[1]。近年来,我国的超高层建筑开始在各个城市兴起,超高层建筑可以集多种实用功能为一体,主要包括公寓、酒店、商场、办公区等,设计师在进行超高层建筑设计时,要首先考虑建筑物的功能需求和定位。

二、绿色超高层建筑设计的重点

1、节能

节能是绿色超高层建筑设计的重点,绿色超高层建筑设计的节能主要包括势能电梯的应用、降低照明能耗、降低空调系统能耗、优化围护结构等。

(1)势能电梯的应用

在超高层建筑中,电梯是必不可少的设备,由于超高建筑物楼层较多,电梯必须全天候不间断的运行,电梯的能耗非常大。势能电梯是一种可以将势能转化为电能的节能型电梯[2],结合超高层建筑设计的绿色环保理念,合理使用势能电梯,可有有效地降低能耗,节能效益十分明显。

(2)降低照明能耗

照明系统是超高层建筑中重要的一部分,在整个超高层建筑中照明系统的能耗能占到20%左右,所以降低照明系统的能耗是对于超高层建筑的节能非常重要。在绿色超高层建筑设计中可以使用多种照明节能技术,例如,在超高层建筑中安装时间控制和感应控制的照明设备,照明设备的感应控制可以有效地降低照明系统能耗,提高照明系统的有效利用率。其次,在超高层建筑中可以充分利用日光照明,根据每天自然光的变化来控制调节照明系统的开启。最后,还可以减少照明系统的功率密度,在超高层建筑中要将照明系统的功率密度控制在标准范围内,尽量降低功率密度,通常超高建筑中客房内照明系统的功率密度在每平方米13瓦左右,办公区照明系统给的功率密度在每平方米14瓦左右。

(3)降低空调系统能耗

在超高层建筑中,空调系统也是不可缺少的设备,数量众多,类型各异,在整个超高层建筑设计中空调系统的能耗能够达到36%左右,降低空调系统的能耗是绿色超高层建筑设计的重点,也是超高层建筑设计节能的重要方式。

(4)优化围护结构

在超高层建筑物设计中玻璃幕墙的面积一般都较大,窗墙比通常超过0.5,在优化围护结构过程中,降低玻璃幕墙的能耗非常重要。

表1优化围护结构的技术措施

技术措施内容参数要求难易程度

1玻璃幕墙VT约0.5,SC约0.35较难

2墙体满足公建节能标准要求,夏热冬暖或夏热冬冷地区建议取K=0.7容易

3屋顶采用高反射涂料或屋顶绿化较容易

4自然通风口采用幕墙通风器、低层开窗或建筑100m以下设置开窗难

5门窗气密性4级以上容易

6外遮阳可在双层幕墙内设置可调外遮阳,或者东、西立面设水平挡板遮阳,也可以整个立面设机翼遮阳难

2、节材

在超高层建筑中建筑材料的消耗非常大,绿色超高层建筑设计需要重点考虑节材。

(1)装修设计一体化

在超高层建筑设计时,建筑的装修图纸要结合建筑设计图纸一起完成,在施工时减少二次装修设计对建筑物材料损害,降低建筑材料的浪费,装修设计一体化可以很好地节约建筑材料。

(2)灵活隔断

超高层办公建筑的面积通常都在10万平方米以上,采用灵活隔断可以极大地降低重新隔断造成的建筑材料浪费,节材效益明显。

(3)使用3R材料

在超高层建筑设计过程中,要尽量使用可循环利用的建筑材料,例如,玻璃、铝合金、钢等,对于非承重的建筑物部分可以使用以废弃材料为基础材料的建筑材料,充分发挥可循环建筑材料的经济效益。

3、节水

节水是绿色超高层建筑设计的另一重点问题,超高层建筑的水资源消耗比较大,通过多种措施最大程度的节约水资源,推动超高层建筑的绿色环保理念。例如,在超高层建筑中使用先进的节水设备,节约用水量。另外,超高层建筑的立体面积很大,可以充分收集雨水,用于厕所用水和日常清洁。

三、绿色超高层建筑设计的难点

1、能耗模型

在绿色超高层建筑设计过程中,要权衡考虑节能优化问题,针对超高层建筑设计的能耗问题,要由专业的技术人员对能耗模型进行分析优化,提出科学合理的意见和建议。建立准确、科学、合理的能耗模型是整个绿色超高层建筑设计中的重点,通过也是一个难点。科学有效地分析能耗模型是超高层建筑节能优化的关键,分析优化能耗模型需要大量的建筑参数,反复调整,不停实验,多个能耗模型之间相互对比分析,从而得到最佳的能耗模型,并且要具有切实的节能效果,在整个超高层建筑设计过程中,能耗模型的对比分析是一项比较难的技术。

2、改善室内环境

由于考虑到超高层建筑的安全性,不能充分利用自然通风和自然采光,因此在绿色超高层建筑设计中改善建筑物室内环境是一个比较难的问题。超高层建筑室内环境的主要问题包括:不能开窗,无法充分利用自然采光和自然通风,采光和通风效果很差;很多酒店、办公建筑物都采用风机盘管[3],不能充分利用自然通风,容易受潮发霉;内外区的建筑问题,在超高层建筑的内区,发热量较大,由于围护结构密闭性较好,不能很好的将热量散发出去,基本不受室外环境的影响,而超高层建筑的外区受外界环境的影响很大,导致超高层建筑的整个室内环境冷热不均。

结束语

绿色超高层建筑设计是建筑行业的发展趋势,绿色超高层建筑可以有效降低建筑能耗,可以有效地节能、节材和节水,对于保护环境有着重要的作用。

参考文献:

[1]韩继红,范宏武,孙桦.中国超高层建筑的绿色低碳之路――思考与实践[A].第六届国际绿色建筑与建筑节能大会论文集[C].2010.

超高层建筑结构设计要点篇6

关键词:框架一核心筒;超限高层;设计

现代城市用地的紧张加快了高层建筑的应用与推广。在现代城市改建、扩建过程中,高层建筑已经成为我国城市建筑设计中首选技术方式。在高层建筑的设计过程中,框架一核心筒结构是较为常用的结构形式。通过框架一核心筒结构的应用提高高层建筑的设计高度,实现高层建筑结构稳定性、安全性、抗震性等性能目标。为了更好的发挥框架一核心筒结构优势、促进我国城市用地使用率的提高,笔者从自身的设计经验出发,以相关文献的收集、整理与分析为重点,分析和论述了框架一核心筒结构在高层建筑的应用要点等问题。

一、框架一核心筒结构技术特点分析

框架一核心筒结构是利用楼梯建筑内的电梯井道、通风井、公共卫生间等构建中央核心筒,同时采用框架形成框架核心简结构。这一结构形式有利于结构的受力、以此提高了楼体结构的抗震性。框架一核心筒结构是目前国际超高层建筑中采用的主流结构形式,而且该结构还能够提高楼体内部的空间、提高空间利用率。框架一核心筒结构的应用利用了核心筒的抗侧向刚度以提高楼体的抗震性能。框架结构更多的承担竖向荷载与少部分水平荷载。框架一核心筒的结构优势在现代超限高层设计中有着重要的应用,这一结构能够利用自身优势在楼层增加的过程中减少框架水平荷载的承担比重,实现建筑使用面积的增加,提高城市土地利用率、提高建筑工程建设投资效益。框架一核心筒结构的优势使得其在现代超限高层建筑中有着极为重要的应用,是目前超高层建筑设计的主流结构形式。

二、框架一核心筒结构在超限高层设计中的应用

1针对现代超限高层设计抗震性能的框架一核心筒结构设计

超限高层框架一核心筒结构中的核心筒结构承担着水平测力抵抗的功能,框架结构承担着竖向荷载与少量水平荷载。在进行超限高层设计过程中,需要考虑核心筒结构与框架结构的不同功能。通过注重铰接节点使核心筒与框架结构间的抗侧力刚度比得到合理分配。避免受力分配不均影响整地抗侧向刚度,提高楼体的抗震性能。在这一设计过程中需要特别注意核心筒刚度与框架结构刚度分配的比例,避免核心筒刚度过度增强导致强震情况下混凝土墙体的开裂。通过科学分配刚度以及相关的计算提高超限高层设计的抗震性能。

在国际上框架一核心筒结构应用中,有一部分国家认为这一结构不适于地震区的高层建筑应用。在对相关资料的收集与整理中可以看出,地震中倒塌建筑多是过度强化核心筒强度,造成框架结构与核心筒结构间刚度分配不合理而造成框架结构裂缝,进而导致框架结构稳定性与抗震能力的降低,导致倒塌事件的发生。而日本本土这一结构应用中,采取了严格的审批制度。其也是针对框架一核心筒结构强震抵抗能力而出台的政策。在我国强震地带的超限高层设计中应谨慎使用这一结构。针对建筑物所在地的地质结构进行框架一核心筒结构的应用,保障建筑物的使用安全。

在我国的抗震设计中,多数地区强制提高抗震等级。这就造成了建筑工程投资建设中经济性不高的问题。而框架一核心筒结构的应用能够从自身结构特点出发,提高工程建设的投资经济性。在实际的应用中,框架结构多采用钢架柱密柱方案,以钢筋混凝土核心筒及钢框架密柱筒中筒结构提高建筑物的抗侧向刚度、有效减少混凝土墙地压应力。通过科学的设计以及多种方式的运用实现超限高层建筑的抗震性能强化,保障建筑物的结构稳定性与抗震性。同时利用框架一核心筒结构优势提高工程建设投资经济性,促进我国建筑行业的健康发展。

2超限高层设计中风荷载与结构设计的分析

超限高层建筑的设计中还要针对建筑物的风荷载水平作用进行分析、计算与论证。利用框架一核心筒混凝土剪力墙结构使结构整体能够在风荷载作用下有效控制建筑物在风荷载下的受力,减少层间位移。针对超限高层风荷载需求进行框架一核心筒结构应力计算,以此保障超限高层建筑物的稳定性。针对超限高层在风荷载作用下的侧向变形、振动等分析风压、风压高度变化系数、风荷载题型系数与风振系数。针对框架一核心筒的结构进行计算,以此实现超限高层抗侧向变形能力的提高。在这一计算过程中还要考虑抗侧向形变与抗震性能需求间的平衡,科学分配框架与核心筒的刚度、应力,以此实现科学的超限高层设计。

三、以框架一核心筒结构设计要点为指导进行超限高层设计

在现代超限高层框架一核心筒结构设计中,设计人员应针对核心简设计、框架设计、框架梁支撑设计、楼盖设计、框架剪力墙等设计工作规范、要求进行相应的设计工作。在核心筒设计中首先确保核心筒应贯通全高。而且,对于超限高层应确保筒体宽度大于全高的1/12。同时注重剪力墙结构的应用。在设计过程中需要针对核心筒设计要求对相关设计要点、连梁等进行计算与设计,确保超限高层的结构稳定性。在框架结构设计中需要注重控制结构的周期与位移,利用墙加大量等方式增强结构抗侧刚度。针对超限高层结构需求进行框架结构设计。另外,超限高层框架一核心筒设计中还应对框架梁支撑条件进行确定。沿梁轴线方向有墙时刚接。核心筒外墙厚度大于0.4Lae(且内侧楼板不开洞,刚接。梁支撑处有柱,刚接。不满足以上条件的梁,铰接。通过设计工作的针对性确保超限高层结构等稳定性、确保超限高层框架一核心筒结构的安全性。

除注重上述规范、要点与设计过程中遵循的基本原则外,超限高层设计过程中还要针对框架一核心筒结构在超限高层应用中楼盖设计要求进行设计。在楼盖设计中应注重核心筒外缘楼板不能开洞口、核心筒内部楼板,厚度≥120mm,双层双向配筋。楼面梁不宜支承在核心筒的连梁上。通过针对框架一核心筒结构特点以及超限高层需求进行超限高层框架一核心筒结构的设计与应用,促进我国城市土地利用率的提高。另外,为了保障超限高层结构的抗震性能,结构设计过程中还需要针对抗震等级要求进行框架剪力墙结构设计与计算,保障超限高层结构的抗震性能。