首页 > 范文大全 > 计划安排

继电保护基本原理及应用范例(12篇)

发布人:其他 发布时间:2024-01-29

继电保护基本原理及应用范文

关键词:继电保护;安全运行;基本要求;措施

中图分类号:TM58文献标识码:A文章编号:

1.前言

提高继电保护装置的安全运行水平,降低设备事故发生的概率,是每个继电保护工作者的神圣的职责与使命。同时,继电保护安全运行也是衡量与评价继电保护装置性能的重要指标和依据。对继电保护安全运行的基本要求之间是互相联系而又互相矛盾的,只有在不断解决保护装置应用中出现的基本要求之间的矛盾,使之既要达到平衡,又要尽可能地满足各方面的要求,保证继电保护的安全运行。

2.继电保护装置的基本要求

继电保护安全管理运行的基本要求主要包括以下四个,如图1所示。

(1)选择性。当电力系统中出现故障时,继电保护装置发出跳闸命令,仅将故障设备切除,使得故障停电范围尽可能的小,保证无故障部分继续运行。

(2)速动性。快速地切除故障以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。

(3)灵敏性。在事先规定的保护范围内部发生故障时,不论短路点的位置,短路的类型如何,以及短路点是否有过渡电阻,都能敏锐感觉,正确反应。

(4)可靠性。在保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不应该动作的情况下,则不应该误动作

图1

3.继电保护安全管理运行的目标体系

继电保护安全管理运行的目标体系是继电保护可靠运行的前提与保障。

(1)应该通过建立健全完善的继电保护专业化、标准化管理体系,加强对继电保护专业的全过程管理,确立目标,保证保护设备运行可控,使电网继电保护投入率达到100%,正确动作率保持在98%以上,从而使继电保护真正发挥电力系统安全卫士的作用。

(2)明确管理范围。继电保护专业应该实行全过程技术监督管理,从功能配置、设备选型、初步设计、施工安装、调试验收,到运行维护、定期检验、设备老化、安全寿命评估、更新改造等等各阶段实行监督到位。

4.继电保护安全运行管理措施分析

继电保护安全可靠运行是衡量继电保护装置性能的重要指标,也是评价各种原理构成的继电保护装置的主要依据,做好继电保护安全运行管理工作,可从以下几个方面做起:

4.1继电保护装置检验应注意的问题

在继电保护装置检验过程中必须注意:将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值(包括改定值区)、改变二次回路接线等工作。

整组试验是一整套保护装置及其二次回路最终性能正确性的关键检验手段。如果在整组试验进行完毕后再进行上述工作,有可能造成定值区错误、定值错误或回路接触不良而无从发现,将给设备的安全运行带来重大隐患。

电流回路升流、电压回路升压试验,也必须在其它试验项目完成后最后进行。保证装置电流回路的正确性的最佳办法就是升流通电试验。最好是通过大电流发生器在电流互感器一次侧加大电流进行该试验,要用钳形电流表进行测量,还要在保护装置液晶显示器检查采样值。如果电流电压虽正确进入了微机保护内,但是装置的模数转换出现故障的话,势必会造成保护装置的拒动或误动。

4.2管理制度措施

继电保护专业人员应严格遵循“发现问题及时、分析问题到位、处理问题彻底”的原则,针对电网中发生的各类继电保护异常和缺陷,实现PDCA闭环管理,并在此基础上制定防范措施,避免了类似情况重复发生。

(1)应认真落实继电保护专业各级安全生产责任制,做到“凡事有人负责,凡事有据可查,凡事有人监督,凡事有章可循”,将安全目标、责任层层分解,落实到人,提高了继电保护专业安全生产管理工作的执行力。加强对微机继电保护装置的软件版本管理,严格执行南方电网微机保护软件版本管理规定,杜绝了由于软件版本管理不善而导致继电保护装置不正确动作的事故,积极开展防止“误整定、误调整”专项活动,排查二次设备和继电保护管理隐患,规范安全管理,确保继电保护设备的可靠运行。强化继电保护专业规范化、标准化建设,着眼于入网管理、现场投运前验收把关管理、装置软件版本管理、反措管理、整定管理等相关工作的全过程,注重系统性和可操作性。

(2)严格按照标准化工作。①按照继电保护设备检验周期,科学安排检修试验;作业严格按照继保作业指导书和作业表单要去进行工作;②定期开展继电保护设备运行分析,全面掌握设备情况,总结设备存在的问题目,并据此采取相应措施计划进行维护整改;③归纳分析继电保护管理上的漏洞,不断完善继保管理制度;④多渠道掌握相关新技术,落实多项措施用于整改缺陷和提高运行管理水平;⑤继电保护工作专业性强,知识更新快,对从业人员素质要求高。可通过邀请合作厂家人员或聘请行业专家对继保人员进行有目标有计划的有针对性的系统培训。

4.3继电保护绩效考核措施

(1)应建立绩效评价的指标体系,比如继电保护定检完成率应该在100%水平,继电保护正确投入率也是100%,继电保护正确动作率不应小于98%。

(2)对于继电保护绩效评价结果的应用,应对未完成继电保护装置定检计划、保护装置不正确动作的情况,根据事故造成的损失影响对相关责任人进行考核,并将其工资奖金挂钩,从而能够通过绩效考评,充分发挥职工主观能动性,增强了工作责任心,经过评价——整改——提高——再评价的循环过程,使各项考核指标均得到稳固提高。

5.结束语

随着电力系统的发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,这对防止继电保护不正确动作,提高继电保护的安全运行,提高供电可靠性,具有十分重要的意义。

参考文献:

【1】广东省电力系统继电保护反事故措施2007版广东省电力调度中心

【2】潘力志浅议保护装置的正确动作与电网安全山西电力

继电保护基本原理及应用范文篇2

关键词:《水电站继电保护的应用与设计》高职教育教学改革

《水电站继电保护的应用与设计》课程是我院电力系统自动化技术专业的核心课程,是电力行业继电保护(中、高级)职业技能考证课程。通过本课程的学习,要求学生能够掌握电力系统继电保护运行安装、调试及设计的技能,但由于本课程综合理论性强,内容分析复杂,学习难度大,若采用传统教学与考核方法,教师工作量大,则学生学习积极性不高,学习效果和考试成绩很不理想,难以实现高职学生职业能力培养的目标。为了增强本课程教学效果,考虑到我院高职学生质量和学习能力较差,我在课程教学中从教学内容组织和教学实施过程方面都进行了相应改革,现将在本学期课程教学中的改革情况总结如下。

一、教学内容选取合适够用

本课程在教学内容的选取和安排上,以我院电力系统自动化技术专业人才培养方案和课程标准为准绳,紧扣继电保护工职业技能资格考证应知和应会部分知识。在教学内容组织中灵活安排教学内容,对教材内容进行适当处理、整合。比如:各种被保护元件的常规和微机保护相关知识融合,各种保护理论与实践内容进行实训现场教学,教学内容安排尽可能由简到难。为了实现本课程的职业能力培养目标,通过本课程的学习,要求学生能按要求调试继电器及成套保护,能按图纸熟练检查继电保护回路接线的正确性,能正确分析判断保护动作的一般故障原因,并能及时进行有效处理;本课程教学共设计了8个学习情境,分别为中低压输电线路继电保护安装调试、110kv~220kv输电线路继电保护安装调试、电力变压器保护安装调试、水轮发电机保护安装调试、中低压输电线路继电保护设计、110kv~220kv输电线路继电保护设计、电力变压器保护设计及水轮发电机保护设计,各学习情境呈并列关系。在教学实施中,将常规保护和微机保护整合在这8个学习情境当中共分解成12个学习型工作任务。部分学习任务间有相似性,但各自特点和侧重点。合理安排教学内容,学生学习本课程的积极性显著提高。

二、教学实施方法多样化

本课程传统教学方法单一,教学过程抽象,学生学习兴趣不高。经教学改革后,我在教学实施过程中采用多种教学方法和手段,充分利用我系现有教学资源和实践教学实训场地,将继电保护理论与实践有机结合,加强学生自主学习和动手能力培养,加深学生对继电保护原理的理解和认识,在一定程度上实现了高职学生职业能力的培养。本课程教学改革中主要采用任务驱动法、多媒体教学法、案例教学法、小组汇报法、引导文教学法、现场教学法等多种教学方法,根据不同内容灵活应用多种方法,强化教学效果。比如:在“情境三:电力变压器继电保护的安装调试”的教学实施过程中,由于变压器在电力系统中的重要性和结构复杂性,其常见故障类型和不正常运行状态较多,从而继电保护类型也多。我首先利用多媒体重温变压器的基本结构、工作原理,并采用相应图片、视频、案例展示出变压器内部或者外部故障的一些现象、造成的后果,引出变压器继电保护类型,并分析其中一种保护的动作情况。然后分组安排电力变压器其他不同保护类型的任务,在规定时间内要求学生做出相应类型的保护原理、安装位置、动作结果和保护范围的分析,期间小组内可自由讨论,然后进行小组汇报。根据教学任务的实际情况,教学内容可以安排在相应实训室进行现场教学和实施。比如:变压器的纵差保护,在了解了保护原理和动作情况之后,要求学生对单个差动继电器进行调试。再安装整个保护的原理图,进行调试。最后在院模拟电站常规和微机继电保护屏柜上设置故障,要求学生分别进行故障分析和排故处理,查找区分出被保护元件本身故障还是二次继电保护回路故障等。

在课堂组织中,为了提高学生的学习积极性和动手能力,保证各个情境和任务学习中人人有任务、人人是主角,在教学中我对全班分小组开展教学,在任务布置中每个小组分配不同任务,这样不至于使教学时间不够用。在小组讨论和汇报时,要求每人都有成果,并对成果进行提问。在师生进行分析评价时,每个时段都涉及不同新知识,不至于让学生觉得内容重复无聊。在课堂管理中,声明学生平时课堂到课率及回答问题的情况关系整组成绩,让小组成员相互监督和相互学习。通过以上多种教学方法和手段的有效实施,学生对本课程中各种继电保护安装、调试和设计技能的掌握有了全面提高。

三、考核评价过程化

传统教学考试成绩体现不出学生的实际动手能力。为此,在本课程的考核评价过程中,提出了“教、学、做合一”的过程考核实施方案。本课程考核采用应知考核+过程考核相结合的方法。应知考核包括日常与应知题库考核,日常考核主要考核学生的考勤、纪律、团队协作能力、组织管理能力等;应知题库考核采用机试,随机抽题目对学生进行测试。过程考核主要考核学生在学习过程中的平时表现、积极性、任务完成情况,以及对继电保护技能的掌握程度。经课程考核改革后,学生学习本课程的综合表现有了明显改善,学习效果有所强化,为后续课程的学习和技能的提高打下了坚实的基础。

四、结语

通过一个学期的教学改革实践,学生觉得继电保护职业技能考证培训变得轻松了,各种常用继电保护原理与技术基础知识也掌握牢固了,各种继电保护实践调试、排故、设计、运行维护能力都有了显著提高,但是在实施过程中存在一定问题,以后我会继续改进,制订更有效的高职继电保护教学改革方案。

参考文献:

[1]李付亮,周宏伟.水电站继电保护[M].黄河水利出版社,2010.

继电保护基本原理及应用范文

【关键词】继电保护趋势

我国自上世纪90年代后期开始也开展了配电自动化研究与应用工作,目前,经过十几年的探索与实践,配电自动化技术已经比较成熟,为故障的快速和科学处理奠定了良好的基础。长期以来,在配电自动化系统的故障处理功能研究领域,国内外开展了大量卓有成效的研究。

1继电保护的发展现状

1.1继电保护的现状

继电保护技术是随着电力系统的发展而发展起来的。几十年来,随着我国电力系统向高电压、大机组、大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代以前,继电保护是用电磁型的机械元件构成的。随着半导体器件的发展,利用整流二极管构成的整流型元件和由半导体分立元件组成的保护装置得到了推广利用。20世纪70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛应用。到80年代后,计算机技术发展很快,利用计算机强大的计算分析能力来分析电力系统的有关电量,判定系统是否发生故障。目前,在电力系统中,微机型继电保护及自动装置得到了广泛应用,它与传统保护相比有明显的优越性。

继电保护技术与其他技术不同的是,新技术不能完全取代老技术。电力系统中运行的继电保护可以说是“四世同堂”。由于计算机网络的发展和其在电力系统中的大量采用,给微机保护提供了无可估量的发展空间,微机硬件和软件功能的空前强大,变电站综合自动化的提高,电力系统光纤通信网络的逐步形成,使得微机保护不再是一个孤立的、任务单一的、消极待命的装置,而是积极参与、共同维护电力系统整体安全稳定运行的计算机自动控制系统的基本组成单元,进入20世纪90年代以来,它在我国已得到了广泛应用,受到电力系统运行人员的欢迎,已经成为继电保护装置的主要形式,从而使得继电保护成为电力科学中最活跃的分支。电力系统的快速发展又给继电保护技术提出了艰巨的任务,电子技术、计算机技术、通信技术又为继电保护技术的发展不断注人新的活力。

1.2继电保护技术的发展趋势

继电保护技术的未来趋势是向微机化、网络化、一体化的方向发展。电力系统对继电保护的要求不断提高,除了实现基本功能外,还应具有故障信息和数据的存储、对数据的快速处理、与其他继电保护联网、共享信息和网络资源等能力。因此,继电保护的微机化是保护技术的必然发展趋势。

保证系统安全稳定运行,就要求各个继电保护共享全系统的运行和故障信息的数据,各个继电保护在分析这些信息和故障的基础上协调动作,才能确保系统的安全稳定运行。实现这种功能的基本条件是将全系统的继电保护全部用计算机网络连接起来,实现继电保护的网络化。计算机网络作为信息和数据的通信工具,已成为当前的技术支柱,那么实现继电保护的网络化,在当前的技术条件下是完全可能的。

如果实现了继电保护的微机化和网络化,继电保护可从网上获取电力系统运行和故障的任何信息和数据,也可将自身所获得的信息和数据传送给网络控制中心或任一终端。因此,各个继电保护不但可完成本身基本功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现了保护、控制、测量、数据通信一体化。

2继电保护的目标

2.1继电设备的故障

电力系统继电保护是电力系统安全、稳定运行的可靠保证。电力系统中的电气设备在运行中,受自然的(如雷击、风灾、机械损伤等)外力破坏、内部绝缘击穿、人为的(如设备制造上的缺陷、误操作等)原因等,不可避免地会发生各种形式的短路故障和不正常工作状态。

电气设备故障最常见的是短路,其中包括三相短路、两相短路、大电流接地系统的单相接地短路及电气设备内部线圈的匝间短路。在大电流接地系统中,电气设备短路故障以单相接地短路的机会最多。

最常见的异常运行状态是电气元件的电流超过其额定值,即电气元件处于过负荷状态。长时问的过负荷会使电气元件的载流部分和绝缘材料的温度过高,从而加速设备的绝缘老化,或者损坏设备,甚至发展成事故。故障和异常运行状态都可能发展成系统中的事故。事故是指整个系统或其中一部分的正常工作遭到破坏,以致造成对用户少送电、停止送电或电能质量降低到不被允许的地步,甚至造成设备损坏和人身伤亡。在电力系统中,为了提高供电可靠性,防止造成上述严重后果,要对电气设备进行正确的设计、制造、安装、维护和检修;对异常运行状态必须及时发现,并采取措施予以消除;一旦发生故障,必须迅速并有选择性地切除故障元件。

2.2继电保护装置的任务

继电保护装置是一种能反映电力系统中电气元件发生故障或异常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务有以下两方面:

(1)当电力系统中被保护元件发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,并保证无故障部分迅速恢复正常运行。

(2)当电力系统被保护元件出现异常运行状态时,继电保护应能及时反应,并根据运行维护条件,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据电力系统及其元件的危害程度规定一定的延时,以免不必要动作和由于干扰而引起的误动作。

继电保护装置的功能,就是将检测到的电气量与整定值或设定的边界进行比较,在越过整定值或边界时就动作。这里的越过有两层含义:①对于反应被测量的增加而动作的保护装置,是指测量的量大于整定值或越过边界到界外;②对于反应被测量的减小而动作的保护装置,是指测量的量小于整定值或越过边界进入界内。

3对继电保护的要求

继电保护的种类有很多,按保护基本工作原理不同归类:有反映稳态量的常规保护和反应暂态量的新原理保护两大类。其中,根据所反应参数不同,常规保护有过电流保护、低电压保护、距离保护、差动保护、高频保护、方向电流保护、零序保护及气体保护等;新原理保护有工频变化量保护和行波保护等。按保护动作原理不同归类:有机电型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等。实际上继电保护的动作原理也表明了继电保护技术发展的进程,目前通常把微机保护之前的保护称为传统保护或模拟保护,与此相对应,微机保护还可称为数字保护。

为了能正确无误而又迅速地切除故障,要求继电保护具有足够的选择性、快速性、灵敏性和可靠性。

3.1选择性

系统发生故障时,继电保护装置应该有选择地切除故障部分,非故障部分应能继续运行,使停电范围尽量缩小。

继电保护动作的选择性,可以通过正确地整定上下级保护的动作时限和电气动作值的大小来达到配合。一般上下级保护之问的时限差取0.5~0.7s,即同一故障电流通过时,上一级保护的整定时间应比下一级保护整定时间长0.5~0.7s,故下一级开关比上一级开关先动作。

3.2快速性

快速切除故障可以提高电力系统并列运行的稳定性,减少电压降低的工作时间。理论上讲,继电保护装置的动作速度越快越好,但是实际应用中,为防止干扰信号造成保护装置的误动作及保证保护问的相互配合,继电保护不得人为地设置动作时限。目前最快的继电保护装置的动作时间约为5ms。

3.3灵敏性

灵敏性是指继电保护装置对其保护范围内的故障的反应能力,即继电保护装置对被保护设备可能发生的故障和不正常运行方式,应能灵敏地感受和很灵敏地反应。上下级保护之间灵敏性必须配合,这也是保证选择性的条件之一。

3.4可靠性

为保证继电保护装置具有足够的可靠性,应力求接线方式简单,继电器性能可靠,回路触点尽可能减少。除此之外,还必须注意安装质量,并对继电保护装置按时进行校验和维护。

以上四个基本要求贯穿整个继电保护内容的始终,要注意四个基本要求间的矛盾与统一,例如强调快速性时,可能会影响到可靠性和选择性;强调选择性时可能会影响到快速性。可以想象,同时满足四个基本要求的继电保护装置,其造价一定昂贵。所以对具体的保护对象,装设怎样的继电保护装置,在满足技术条件的同时,还要分析其经济性。

继电保护发展到今天,它的构成原理已形成了两种逻辑:一种为布线逻辑,另一种为数字逻辑。布线逻辑的继电保护装置,其功能靠接线来完成,不同原理的继电保护装置其接线也不同;数字逻辑的继电保护装置其功能由计算(程序)来完成,不同原理的装置计算方法(程序)不相同,但硬件基本相同。布线逻辑的装置要实现一种完善的特性(如四边形阻抗边界),接线将十分复杂,有些边界还不可能实现。数字逻辑的装置其原理是由计算(程序)来实现的,因此,可实现特性完善的装置。

4结语

继电保护技术的发展先后经历了机电型、晶体管型、集成电路型和微机型,从初期的机电型发展到今天的微机型,已经历了四代的更新。继电保护的种类虽然很多,但就其基本组成而言,整套继电保护装置是由测量部分、逻辑部分和执行部分三部分组成。

继电保护基本原理及应用范文篇4

关键词:原理;构成;继电保护

中图分类号:TM63文献标识码:A

1继电保护的基本原理和保护配置构成

1.1基本原理

继电保护的基本工作任务是正确区分系统的正常与非正常运行状态,利用电力系统各个组成原件的安全运行既定参数值,对故障进行识别,当确定有故障产生时候,准确、迅速的切断故障原件或者发出预警信号,以避免故障的扩大,进而保护电力系统的安全运行。其保护方式主要为:①故障时电流I:增大-过电流保护。②正常时I入=I出=>故障时I入≠I出-电流差动保护。③故障时电压U:降低-低电压保护。④故障时阻抗Z:减小-阻抗(距离)保护。⑤阻抗角:正常时:约20°;正方向K3:60°~85°;K3:180°+(60°~85°);-方向电流保护反方向。⑥相序量:正序=>负序/零序。⑦非电气量:温度升高-瓦斯保护。

1.2保护配置

继电保护配置主要分为:系统测量部分、逻辑关系部分和命令执行部分。配置图1如下:

图1继电保护配置图

测量部分:测量有关电气量,与整定值比较,判断保护是否应该

启动。逻辑部分:根据测量部分各输出量的大小、性质、出现的顺序

或它们的逻辑组合,确定是否应该使断路器跳闸或发出报警信号,

并将有关命令传达给执行部分。执行部分:根据逻辑部分的结果,立

即或延时发出报警信号和跳闸信号(故障、不正常运行时)

2变电运行中继电保护的配置问题分析

2.1继电保护配置方案

在变电运行的继电保护配置方案中,是由变电站层与过程层共同构建成变电系统继电保护的主设备。其配置原理图如下图2所示。

图2继电保护配置原理图

对变电系统中的一次设备,过程层的配置需进行独立主保护,如一次设备为智能设备,需将保护设备安置在内部,如不是智能设备,则应将保护设备、测控设备等就近安置在汇控柜中,以降低对设备维护与运行的工作量。该方案避免了因通信链路跳闸、采样而引起的保护功能失效,同时降低了继电保护需消耗的网络数据份额。

2.2继电保护配置原则

根据《继电保护和安全自动装置技术规程》的要求,变电运行中继电保护配置还应当遵循以下几方面原则:①继电保护的智能化应以提高保护的可靠性作为基本出发点,应充分满足“可靠性、选择性、灵敏性、速动性”的要求。变电运行中的继电保护,不仅仅是传统的继电保护装置,而是继电保护系统,需要一次设备与二次回路的协调配合。②电子式互感器内需由两路独立的采样系统进行采集,每路采样系统均应采用双A/D系统,并接入合并单元(MU),每个合并单元输出两路数字采样值由同一路通道进入一套保护装置。③保护应直接采样,对单间隔的保护需直接跳闸,当涉及多间隔保护宜直接跳闸。如有必要进行其他的跳闸方式,相应设备应满足保护对快速性和可靠性的需要。④继电保护之间的失灵启动、联闭锁等信息宜采样GOOSE网络传输方式。断路器位置接点经点对点和网络传输,本间隔可采用GOOSE点对点方式,而间隔间则采用GOOSE网络方式。⑤变电运行中各电压等级的网络需相互独立。为避免同一装置接入不同网络时,各网络间的互相干扰,要求装置内部各网络的数据接口控制器也应当完全独立。⑥110KV及以上电压等级双母线、单母线分段等接线型式,各间隔宜配置独立的三相ECVT,以提高保护的可靠性,并简化二次回路。⑦继电保护装置适宜就地安装、独立分散,保护装置的安装运行环境应符合相关的标准技术要求。

3变电运行中各设备继电保护问题分析

3.1主变压器的继电保护

变压器是变电运行中的重要电气设备之一。它的故障对变电运行中的正常运行和供电可靠性都会带来严重的影响。因此必须根据变压器的容量和重要性,装设安全可靠、性能良好的保护装置。按照规范要求,变压器的电量保护适宜按照双套配置,此时各侧合并单元(MU)与智能终端也双套配置,在配置时采用主、后备保护一体化配置。差动保护与第一套智能终端和MU对应,后备保护与第二套智能终端和MU对应。变压器保护实施方案如下图3所示。

图3变压器保护实施方案示意图

从图3可以看出,一方面,变压器的高、中、低压侧的合并单元得到的电流电压信号被直接传至变压器保护装置与SV网络,实现了保护装置不通过SV网络获取数据,对信号的直接采样。另一方面,变压器的智能终端除了与保护装置相连接以外,还连接GOOSE网络,实现了保护装置可通过智能终端进行跳闸。按照图3的实施方案示意图,变压器非电量保护需就地直接电缆跳闸,现场配置本体智能终端,并由GOOSE网络传输接地刀闸控制信息,以及非电量动作报文与调档。

3.2线路的继电保护

在变电运行中,测控功能与保护功能应结合一体,并按照间隔单套配置。线路保护通过直接跳断路器和直接采样,并具有GOOSE网络启动断路器失灵、重合闸等功能。实施方案如下图4所示。

图4线路保护实施方案示意

线路两间隔之内的保护测控装置,不但与智能终端、合并单元相对应进行依次连接,而且通过GOOSE网络连接交换息。保护测控装置和智能终端的连接,实现了直接跳闸功能;与合并单元的数据传输,则实现了直接采用的功能。安装在母线和线路上的电子式互感器,在得到电压或电流信号以后,先将其接入合并单元中,然后经过数据打包后,再经过光纤送达保护测控装置和SV网络。

3.母线的继电保护

母线的继电保护通常采用的是分布式设计进行相应的配置。利用单套配置实现母线保护,有利于测控装置和保护装置集成的实现。具体实施方案如下图5所示。

图5母线保护实施方案示意图

由图5可以看出,母线保护的实施方案与线路保护较为类似,但结构更加简单。母线保护装置直接和智能终端与合并单元连接,分别实现直接跳闸功能和直接采样的功能。跨间隔信号通过互不干涉的SV网和GOOSE网络进行传输。

继电保护基本原理及应用范文篇5

【关键词】GIS;电流互感器;电压互感器;继电保护

21世纪是经济和社会持续高速发展的时期,仅仅依靠传统的人工管理已经不能够满足配电网建设的需求,也不能够保证其安全运行。对于之前手工与计算机处理并存的模式已经成为限制电力企业进一步发展的重要瓶颈,随着科技的不断发展和进步,利用GIS技术来解决配电网的相关管理问题已经成为切实可行的基础和原则。对于国内企业而言,为了进一步的提高电力企业的市场竞争力,扩大电力企业的份额,应该不断的推动电力行业的信息化程度,加强对电力企业计算机管理系统的应用和改造。

1继电保护装置在变电站中应用的概况

继电保护装置对于高压电网的安全以及其稳定的运行有着很重要的作用,随着我国电力系统规模的日益扩大,等级不断的提高,系统运行的方式与网络结构的日趋复杂,对于变电保护的要求也就随之不断的增高。传统的电磁以及其电磁感应的原理在对其变电站的保护上,存在着许多缺点,比如:动作速度较慢、抗震的性能较差、灵敏度也比较的低等。晶体管继电保护装置也存在着不少的缺点,比如:数据的判断不准确、抗干扰的能力较差、装置的本身质量不是很稳的等。

随着计算机技术的快速的发展,大规模的集成电路技术也得到了快速的发展,微型计算机与微处理器也进入到了实用化的阶段,微机保护也开始逐渐的实用。微机继电保护装置是以微处理器为基础的一种数字换处理的方式,其使用不同的软件模块来实现其各种功能。微机继电保护装置的发展速度很快,其应用的范围也很广泛,功能也比较的强大。特别是在变电站的保护功能上,采用不同的装置可以实现不同的保护的功能,另外其还可以实现以前难以实现的保护的功能,随着科技的不断的发展,更多先进的技术将会应用在变电站的保护中。

2变电站电力系统对继电保护装置的要求

随着继电保护装置自身功能的快速发展,电力系统对于继电保护装置也有了新的严格的要求,电力系统对于继电保护装置最基本的要求是,要有一定的可靠性、快速性、灵敏性以及选择性。其可靠性主要强调的是其保护的装置在电力系统出现故障的时候必须有可靠的动作产生;快速性就要强调的是在发生故障的第一时间之内要产生相应的动作,这样对于继电保护装置最基本的要求,因为地理系统的故障会随之时间的延长而增加其破坏性,所以应该在最短的时间内采取防范的动作;灵敏性则主要是要求继电保护装置反应要灵敏并且要快速,动作作用的范围要准确,能够正确的反映出故障的范围,尽量的减少停电的面积;选择性最要强调的是继电保护装置不能发生误动的现象,也就是指不能发生失误操作。所以,为了保障电力系统安全的运行,继电保护装置的应用是非常必要的,这样可以有效的保障电力系统的安全运行。

3GIS技术在综合自动化变电站的具体应用

由于在实际生活中,对于配电网的管理具有比较明显的空间分布特性,即将发电、输电、变电、配电和用电这五大资源均匀的分布在辽阔的空间区域内,从而使得电力企业管理电网的核心对象转向为空间数据。采用GIS技术,可以有效的利用地理信息系统可视化的管理空间事物的长处,把系统中的各类数据抽象成点、线和面这三大类,从而为电力企业提供了一个在地理信息维护与管理基础之上的平台。总而言之,GIS技术在配电系统的基本应用展现为以下几个方面:

采用GIS技术能够转变传统纸制图册和表格的资料管理形式,能够更加灵活有效的展现数据统计的结果。在结合用户需要的基础上实时的改变台账的表格结构,并且合理的打印各条线路与各个地区的电网分布图,从而有效的联系和结合配电网络中的图形和数据库信息以及地理信息,将供电设施与网架结构有效的结合与联系起来,使相关管理部门能够及时有效准确的掌握配电网的空间分布状况,来更好的实现对设备的日常运营与维护。

4使用GIS综合自动化变电站继电保护分析措施的有效影响

二十一世纪是经济和科技高速发展的时期,是对传统技术进行更新换代的时期。目前而言,GIS综合自动化变电站是未来城市变电站要建设和发展的趋势,因此会在不久的将来越来越普遍地出现。随着科技的发展与进步,GIS综合自动化变电站也很有可能呈现出不同的特点,因此它的继电保护施工也会出现许多的不同,这就在客观上需要我们电力工作者能够与时俱进,不断的学习新的知识和相关技术,从而在施工中不断的发现新的问题,去解决问题。本文所探讨和研究的只是本人在施工中遇到的问题和已经获得的经验体会,也是GIS综合自动化变电站在施工中比较典型和特殊的,因此具有很好的借鉴意义。随着经济的发展和社会的不断进步,综合自动化变电站的继电保护分析技术也在不断的发展进步。根据现实应用情况,要不断的推广和扩大GIS技术在自动化变电站的继电保护的作用和影响,从而从根本上克服传统电气图纸在管理方式上的缺陷。这样不仅大大的减少了电气工程师的工作量,使其得以从复杂的电气图纸中脱身,而且大大的缩短了电气工程师处理故障的时间,为实现经济节约型和环境友好型现代社会以及社会主义和谐社会的建设做出了重要的贡献。

5结束语

对于电力企业而言,不断的推广和应用GIS技术,不仅适应了我国电力系统的实际需求,而且也是供电企业提高自己市场竞争力的关键措施,是适应竞争不断激烈的市场经济的重要表现。因此电力企业要采用先进的GIS技术,不断的完善和改进基本服务设施,从而对电力营销业务的制度、相关工作流程和服务项目进行全员和全方位、全过程的规范化和优质化的整合更新。可是由于国内电网结构和管理模式与国外的差异,不能够完全照搬外国的技术和设备,应该结合具体实际,针对我国电力企业实际的发展需求,来研发出适合自己的GIS技术。从而为全面综合的提高供电企业的综合管理水平,建设社会主义和谐社会而努力!

参考文献:

[1]李少华.电力GIS系统的功能优势及在云南电网的应用[J].云南电业,2010(11).

[2]黄霄宁,张真良,杨志超.地理信息系统及其在电力系统中的应用[J].江苏电气工程,2012(8).

[3]张军海.地理信息系统基本原理[M].西安地图出版社,2011.

继电保护基本原理及应用范文1篇6

【关键词】继电保护;新技术;发展

1继电保护发展

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,仅仅用10年左右的时间走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。60年代建成了继电保护研究、设计、制造、运行和教学的完整体系,为我国继电保护技术的发展奠定了坚实基础。60年代到80年期间是晶体管继电保护蓬勃发展并广泛采用的时代,葛洲坝500kV线路上应用的国产晶体管方向高频保护和晶体管高频闭锁距离保护,从而结束了500kV线路保护完全依靠从国外进口的时代;在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到90年代初,以南京电力自动化研究院与天津大学与南京电力自动化设备厂合作研制的高频保护为代表,基于集成电路的微机保护普遍运用于基层设备,为之后继电保护的飞速发展奠定了结实的基础。在此之后的20年中,陆续推出了第二代、第三代乃至第四代产品,更新换代超出了之前所有时代。从原先8位CPU多用途处理器到如今32位DSP专用信息处理器;从原先由于计算能力不足,只能应用于工频处理并存在10ms的计算盲区,到如今能应用复杂的保护原理以及可靠的保护性能;从原先采用输电线为通道的高频通道容易出现保护误动,数据传输容量低,仅仅只能作为故障判据,到现在使用光纤通道,大大提高可靠性而且能反应故障信息。不得不说这是一次井喷式的发展。

2继电保护的现状

当今继电保护技术发展迅猛,普遍实现计算机化,正逐步向网络化发展,并且在此基础上建造以保护、控制、测量和数据通信一体化智能化变电站试点。

2.1继电保护硬件方面

随着计算机硬件技术的发展,微机保护硬件技术得以不断提高。原华北电力学院研制的微机线路保护硬件不到5年时间就发展到多CPU结构,后又发展到总线不出模块的高性能大模块结构。现今在解决微机保护动作的可靠性之后,电力系统微机保护以其具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,和其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的优势,迅速的替代了以往的集成电路保护,并广泛应用在电力系统行业。

2.2保护通讯、数据交互网络化

计算机网络时代的到来,计算机网络深深影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。继电器保护技术于依托网络,每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,使继电保护的作用不只限于切除故障元件和限制事故影响范围,还能保证全系统的安全稳定运行。对于某些保护装置实现计算机联网,也能提高保护的可靠性。以天津大学针对三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理为例,由若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,对于像三峡电站具有超高压母线的系统枢纽非常重要。由上述可知,微机保护装置网络化可大大提高保护性能和可靠性。

2.3保护、控制、测量、数据通信一体化

继电保护实现计算机化和网络化,保护装置实际上可实为一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一个终端。因此,若能保证系统安全性和可靠性,微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。以往,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰,必将在电力系统中广泛得到应用。如采用光电流互感器(OTA)和光电压互感器(OTV)的情况下,OTA和OTV的光信号输入到一体化装置中并转换成电信号后,一方面用于保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。目前,国内以220kV西泾变为代表,采用IEC61850标准,利用光纤实现二次装置互联互通;大规模采用OTA互感器,以及OTV互感器,提供双A/D采样数据;全站各电压等级均采用保护测控合一装置;变电站各间隔保护测控装置、合并单元、智能终端、在线监测IED等设备均下放布置于配电装置现场。与传统变电站相比,极大的简化了二次接线,提高装置互操作性;采样数据更加稳定,不易受到传输过程中站内的电磁干扰;节省了很多屏柜位置,简化二次设备。国网公司在全国各电压等级都开展了智能变电站的试点工程,各种新技术都投入了工程实际应用,得到了实践的检验。根据国家电网规划,预计到2015年,新建110(66)kV及以上智能变电站约5100座,完成变电站智能化改造约1000座。我国已经成功的向实现保护、控制、测量、数据通信一体化做出探索和尝试。

3国内继电保护发展面临的挑战

虽然国内已经成功做出了向实现保护、控制、测量、数据通信一体化的探索和尝试,但是也伴随着诸多新问题的出现。

3.1硬件设备性能还有待提高

随着继电保护数字化发展,大量开关量信号及各种采样信息通过一体化装置整合转换为数字量,依托网络实现数据共享。因此合并单元以及各种网络设备的性能尤为重要。它关系着整个继电保护系统的稳定性和可靠性。但是,由于目前数字化变电站的建设仍处于初期阶段,在软件技术上:合并单元虽然实现了采样数字化,但与保护、测控装置仍采用点对点通信方式,网络共享并未实现;在硬件技术上:智能电网部在2012年5月对合并单元性能检测中,南瑞科技等8家国内制造厂家提供的19种不同型号设备,均存在不同程度的问题。主要问题如下:

(1)暂态性能测试及气候环境测试,所有设备均未通过。如表1所示在暂态测试中:电流、电压的突变会造成不同程度采样的失真,不满足5TPE的精度要求。

(2)在气候环境测试中,尽管在厂家标称的-40°C至70°C的温度范围内设备运行正常,但考虑到目前已建成的变电站中实际运行情况,正常工作时就已经接近70°C上限,在提高至85°C标准后,有不少厂家的设备出现不同程度的采样失真,甚至无法工作。

(3)时间性能存在问题。时间性能包括对时性能、守时性能、失步再同步等。在失步再同步过程中,由于不同厂家采用处理方式的不同,在不同厂家设备同时运行时,出现了采样不同步现象。

表1合并单元的暂态电流峰值瞬时误差

3.2相关标准与技术规范的完善和补充

智能站中,取消了二次电缆的模式,若采取了网络采样与网络跳闸的模式,原本的安全措施比如退“硬压板”,已经不再实现效应。在电力行业中,最新09版电力安全规程中新增了直流输电以及特高压输电等新内容,但面对未来的智能化的发展趋势,许多新技术模式和管理模式的出现以及智能站带来的安全问题,需做相关补充。相对于安全规范,国家电网已经制定了一些技术规范,例如:Q/GDW441-2010《智能变电站继电保护技术规范》、2011-58号《国家电网公司2011年新建变电站设计补充规定》、Q/GDW_383-2009《智能变电站技术导则》等。不过目前对二次合并单元采样,采用的暂态性能标准中还包含了对于一次互感器的暂态误差,需要相应的完善。随着,智能化的越来越成熟,相关标准与技术规范的完善和补充将是一件任重而道远的工作。

3.3检修模式的探讨

3.3.1保护专业人员面临专业整合

智能化的二次系统,已经很难区分继保、自动化以及通信专业了。智能化变电站中保护测控装置合二为一,保测一体装置的GOOSE跳闸属于保护专业,而保测一体装置具备的测控功能,与后台通信的MMS接口又更多地倾向于自动化专业。同时信息传输网络化使得保护设备和自动化设备都共用同一个网络,间隔层GOOSE网络交换机和过程层的智能终端是测控装置和保护共同的传输网络和执行机构。智能化变电站中使用光纤作为数据连接通道,大量交换机以及智能终端的应用使得变电站不再仅仅作为一个网络终端。在日常维护以及检修中,保护、自动化专业和通信专业紧密结合、缺一不可。检修人员不仅需要掌握继电保护的专业知识,还需要具备相应的自动化及通信专业的知识;检修人员应跨越专业之间的隔阂,采用大二次的专业模式,加强对各专业知识的综合应用,以适应新技术的发展;同时在工作中,了解智能化变电站存在的危险因素,采取必要的安全措施,防止人为事故的发生。

3.3.2设备检修的新方式

由于二次电缆的取消,保护、控制、测量、数据通信一体化,使运行设备与检修设备之间的联系更加难以区分,这直接导致安全措施的难度加大。传统变电站一次和二次之间电缆通过“点对点”连接,除了运行人员的基本安措外,检修人员还能通过拆除外部二次回路的节点,确保检修设备与运行设备的隔离。但智能站通过光纤联系,回路并不是“点对点”的节点连接,光纤中检修设备数据的中断要视情况而定,一根光纤可能还有其他运行中设备数据传输,直接拔出很可能影响到其他运行设备。如果对运行设备和检修设备的分界面了解不够充分,很可能会导致由于开工条件不满足,造成需要扩大停电设备甚至导致其他运行设备的非正常退出。

同样由于智能站二次回路是光纤介质,检修工作也与以往的检修工作不同。现常规变电设备的检修都是基于电气原理,而智能站传输的是数字报文。原有的检修手段已经失效,进而由光路检查和报文分析手段替代。这种检修理念的改变,不是短时间就能掌握的。就目前而言,显而易见,检修工具器材将会被大量电子器材所代替,原先的基于电气原理的设备无法运用在新设备检修中;日常维护中,对光纤回路的维护和设备运行环境的改善更为重要,因此光纤回路光功率测试,并对损坏的光纤通道进行更换,保证一定裕度的备用芯,二次设备运行的温度、湿度以及网络系统性能的监视,将成为检修工作的侧重点;报文分析作为基本的检修手段,就要求一个合格的二次检修人员能够通过报文,知道装置之间的通讯机制,发现设备故障点以及安全隐患。

继电保护基本原理及应用范文篇7

【关键词】继电保护;技术应用;安全性

1.继电保护分析及安全性

社会现代化的日新月异变化对不断发展的电力系统提出了越来越高的要求,其中最为重要的前提条件是“安全”。作为电力系统的重要组成部分,电力电气设备的安全性能不容忽视。

1.1继电保护装置的安全标准

继电保护产品在现场运行中存在着包括电击、着火、机械、辐射、化学等多方面的危险形式,因而此类产品在安全性能方面必须达到以下几点条件:(1)在预期的环境条件下能抵御外界的非机械的影响,而不危及人身与设备的安全;(2)在满足预期的过载条件下,不应危及人身和设备的安全;(3)在可预见的过载条件下,不应危及人身和设备的安全:(4)应有对人体的直接触电或间接触电所引起的身体伤害及其他危害有足够的防护措施;(5)不应产生危害人身安全的温度、电弧或辐射等危险;(6)绝缘性能应满足各种预见的情况;(7)对危害人身和设备安全的其他危险应有足够的防护措施。

1.2电器设备的安全标准

IEC60255-27:2005将电气设备进行了分类,按照不同的安全防护级别划分为三类设备,根据不同类别的设备,提出了不同的安全要求,其中包括:(1)一般要求;(2)电击防护要求及单一故障状态定义;(3)机械方面安全要求;(4)可燃性及防火要求;(5)通用和基本安全设计要求。该标准为保证继电保护及自动化产品的安全运行提供了依据。

2.电力系统的技术应用

(1)电压矢量跳跃技术的继电保护系统的应用三相平衡交流供电蹦的电压,其大小和相位是相对稳定的,只要系统阻抗或电流不发生改变,则系统电压矢量基本维持不变。当系统故障时,突变电流将导致电压相角跳变。如突变电流增大,则系统短路;突变电流为零,则系统开路失压。常用的差动保护原理是利用比较被保护设备两端电流的大小和相位作为启动判据,不反应区外故障或电网的扰动。当系统故障,由于三干重合闸,会引起发电机输出电压或频率的波动。严重时可能出现异步情况,损坏发电机或者发电机和设备之间的传动装置。监视电压相角可作为确定馈线受扰的依据。当系统故障时,突变电流将导致电压相角跳变。跳变相角由负载变化的大小和性质决定。的变化作为保护启动的判据,当它超过保护设置的限值时,将开断发电机或跳耦合断路器,这意味着矢量跳跃主要用于电网去耦。具有矢量跳跃功能的微机保护装置,尤其适应于以下几个类型的保护:水轮机、蓄能发电机、入网发电站、柴油发电机、汽轮机、工业电力站传统的蒸汽发电站、大中型同步电动机、大中型主变压器等。

(2)基于网格平台的中压电网广域保护系统广域保护是这几年来国内外新兴的一个课题,它不同于传统的单个电气元件的逻辑保护,而是从电网的整体或区域电网的角度出发,以保证受扰动的系统能够安全、稳定地运行为最大目标。广域保护的提出是建立在计算机和通信技术发展的基础上的。与大型互联电网的安全和稳定性要求有着密切的关系。借助可靠的通信网络,以及智能仪器的推理和信息交换功能,广域保护系统可以获得电力系统多测点的信息,在快速准确地切除故障的同时,能根据故障切除前后电网潮流分布和拓扑结构变化的情况,合理选择预防性的控制措施,更新保护区域的划分和保护整定值,防止大规模的连锁跳闸和崩溃。

广域保护系统从电网的整体或区域电网的角度出发,用广域测量系统测得电力系统多测点的信息,在快速准确切除故障的同时,能根据故障切除前后的电网潮流分布和拓扑结构的变化情况,合理选择预防性的控制措施,更新保护区域的划分和保护整定值,防止大规模的连锁跳闸和崩溃,保证了受扰动的系统能够安全、稳定的运行。

3.电力系统继电保护的发展和作用

3.1继电保护的定义、功能

电力系统的故障:三相短路、两相短路、单相短路接地、两相短路接地、断线、变压器绕组匝间短路、复合故障等。电力系统不正常运行状态:小接地电流系统的单相接地、过负荷、变压器过热、系统振荡、电压升高、频率降低等。继电保护系统的作用在于,当其保护的系统中电路或元器件出现故障或不正常运行时,这个系统的额保护装置能及时根据设定的程序在系统相应的部位实现跳闸或短路等既定操作,使故障电路或元器件从系统中脱离或者发出信号通知管理人员处理,以达到最大限度地降低电路或元器件的损坏,保护整个电路系统的安全,使被保护系统稳定运行,提高系统的安全性,减少因部分电路或元器件损坏而导致的大面积故障的情况。

继电保护的发展是随着电力系统和自动化技术的发展而发展的。继电保护系统的特殊功能决定其对电路系统的安全、稳定运行起着关键的保护作用,其相应的功能也要随着电力系统的发展而改变。目前,继电保护应用的最主要方面是高压输电,随着我国电力运输系统的规模不断壮大和输电系统等级的不断提高,输电系统的运行方式和系统机构愈加复杂,对继电保护提出了更高的要求。要保证受保护的电力系统安全、可靠的运行,电力系统的继电保护必须具备四个特性:可靠性、灵敏性、速动性和选择性。即保护系统必须反应速度快,回应动作快,灵敏性高,判断准确。

3.2继电保护装置的发展,局限性及其现阶段的应用范围

继电保护原理的发展是从简单的电流保护逐步向复杂的距离保护和高频保护过度的。继电保护装置的发展则依赖于构成继电保护装置元器件技术的发展。其发展大致经历了四个阶段,即从电磁型、晶体管型、集成电路型到微机型保护的发展历程。传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。

继电保护系统在电力系统中起着开关或警报的作用,我们可以将该原理称为开关原理。现阶段,我们习惯性的将继电保护系统认定为高压、低压的电力输电系统的保护系统。然而,继电保护的这一开关原理已经广泛应用于大部分的电路、电器、电子等高压、低压、强电、弱电等技术领域。因为每个继电保护系统所要保护的对象不同,所以需要采用的保护装置也要相应的加以选择,以达到功能与成本的匹配。

继电保护基本原理及应用范文篇8

【关键词】电力系统;继电保护;实验教学

作者简介:陈静(1976-),女,汉族,四川都江堰人,四川水利职业技术学院,本科,助理实验师,研究方向:电力系统自动化电气实验教学

1前言

选择我国现在的电力系统继电保护实验存在种类较少,功能简单的缺点,要找齐所有的设备不仅需要许多存放的地方,还需要大量的资金。我国许多具有电力系统的学校在继电保护实验室的设施比较落后。研发一种比较科学的微机继电保护多功能实验系统已经成为提高教学质量的途径。为了完成教学目标,需要设计出一套电力系统微机继电保护实验教学系统。在教学系统根本上突破了以往的只能实现一种保护功能的不足,增加了多种保护功能,从而使学生在教学当中可以完成某项研究。

2设计系统的内容

教学系统主要包括:电力系统信号发生器、基本教学系统、常用的继电保护实验设备。常用的继电保护实验设备包括嵌入式控机PC/O4以及DSP芯片等,同时也包含了收集信息、处理信息,应用信息等方面。其作用是可以在线编制保护程序并下载实现科学研究和高级试验、通过多媒体教学系统和网络相连实现形象教学、测试装置主要环节的电路工作原理。电力系统信号发生器与基本教学系统使用信号线来连接,然后接受信号发生器提供的能量,通过信息采集、数据过滤、信号转换形成数字信息,最后帮助学生进行静模检测,使其可以在新型的教学系统中获得实验需要的信息和资料。

3图形化软件系统设计

3.1图形处理模块

图形操作包含图元的打印、储存、转换、编写、画图等。而这些图元与实验的电气元件有着重要的联系,包含常用线路、主线、断路器、变压器、发电机等。图形处理功能表现在对图形进行制作和确定位置的。客户只要使用鼠标点击既定按钮进行操作就可以画出需要的元件图像,从而可以解决了使用人工进行操作的麻烦。但在画元件图像时要注意几点:第一是要注意绘图模式与颜色的应用,第二是要根据具体情况使用VB6.0提供的各种图形方法。通过背景的突显,再结合绘图的既定模式进行图元的制作,可以有效提高学生进行图形处理的效率。

3.2系统计算的内容

教学系统以界面为接入口,以数据库为实验操作的指挥处。由于系统添加了科学的可视化制作技术,系统的各种功能都可以在界面中进行展示。客户可以通过录入信息、修改资料、查阅资料来获得想要的效果[1]。同时也可以通过设置个性化的运行方法,来处理各种类型的信息。在另一方面系统可以计算出各种故障的的原因和后果。客户经过应用系统来计算所有线路和元件的故障,并且计算结论放到数据库里进行查找,准确的结果在系统的界面中进行显示[2]。

3.3应用数据库的方法

对电力系统中的各个设备、参数进行管理需要建设相应的模型,而模型则需要详细的数据内存才能正常运行。而整个系统的基础是数据库的设计应用。其包含有图形元件的位置参数以及各个网络架构的所有结构参数等资料[3]。数据库是所有基础的数据的集中营。它具有使应用程序简单化、加快应用程序运行的时间,保持数据和程序独立的特点。客户可以把所有故障计算的结果放在数据库之中,然后显示为各种内容的报表,不仅可以方便学生查找资料,也可以帮助学生提高进行实验的进度,使其可以更快得到准确的实验结果。

3.4应用软件功能的方法

教学系统经过对对图形进行处理,对故障进行处理以及对数据库进行管理可以使保护实验顺利进行。把系统的信息转换成图形或者表格,可以提高学生对教学系统的认识,同时可以加深对对保护实验的运行过程了解以及对抽象的继电保护实验原理的理解,并且系统内部的信号显示模块可以工具也可以显示继电保护系统存在的优势和劣势等,方便学生进行继电保护系统的探究。在另一方面,教学系统不但可以满足学生对继电保护系统进行探究的要求,还可以按照学生的需要进行延伸教学系统的内容从而满足实验要求。

4电力系统继电保护实验基本内容和要求

以往的电力系统继电保护原理实验的要求包含熟悉对继电保护的基本内容,操作方法以及结构原理等。经过动手进行实践,可以有效提高学生对继电器的基本原理的掌握程度。同时因为对继电保护系统进行研究,可以发现在实验当中,不仅要熟悉电力系统继电保护的操作方法,还需要加强对保护装置的灵活应用。通过教学系统的探究可以帮助学生完成电力系统方面的课程。在另一方面,继电保护教学实践需要依据教学大纲的要进行实施,同时也突出实验目的和作用。有了这一套科学的、合理的继电保护实验系统,学生在实验过程中,不仅可以进行微机保护实验,还可以进行常规保护实验,同时可以完成自己设计的保护实验。

5结语

面对现在培训的微机保护实验、电力系统实验存在种类较少,功能简单的缺点,要找齐所有的设备不仅需要许多存放的地方,还需要大量的资金。同时随着时代的发展,以往的继电保护实验装置也在慢慢地无法跟上科研和教学的脚步。根据系统的不足之处,本文加强对电力系统继电保护实验教学系统的探究。该系统采用太网、嵌入式控机PC/O4以及DSP芯片进行结合的硬件电路,同时根据实验进行的情况使用高级语言的集成开发环境VB6.0研发了具有针对性和可行性的多媒体教学及计算机控制系统,使一套实验装置得以顺利完成多种保护功能实验,有利于我国电力系统继电系统教学的完善,使学生可以更好地应用培训的微机保护实验、电力系统实验来完成某项研究,促进自身应用水平的提高。

参考文献:

[1]陈达银.创新实验室建设中几个问题的探讨[J].实验技术与管理,2015(01):12-14.

[2]黄琴,杜风沛,王志敏.高校实验教学质量控制系统分析[J].实验技术与管理,2015(01):25-26.

继电保护基本原理及应用范文篇9

【关键词】继电保护;速动;微机化;网络化

Abstract:Powersystemrelayprotectionisguaranteedaneffectivetechnologytoensurethesafeoperationofpowersystemsandtoimproveeconomicefficiencytechnology.Theconcept,thestructure,thebasictasksofpowersystemrelayprotectionandthebasicrequirementsofpowersystemonitareelaboratedinthispaper,thedvelopinghistoryofrelayprotectionisreviewed,thedevelopmentstatusisdiscussed,atlast,thedirectionoffuturedevelopmentofrelayprotectionisforecasted.

Keywords:relayprotection;quick-operation;computerization;networkiing

1.继电保护的概念、组成、任务及其基本要求

1.1继电保护的概念和基本组成

继电保护技术通常是指根据电力系统故障和危机安全运行的异常工况,提出切实可行的对策的反事故自动化措施。

一般来说,一套继电保护装置由3个部分组成,即测量部分、逻辑部分和执行部分,其结构原理图如图1所示。

图1继电保护装置的结构原理图

(1)测量部分。测量被保护装置的工作状态电气参数,与整定值进行比较,从而判断保护装置是否应该启动。

(2)逻辑部分。根据测量部分逻辑输出信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

(3)执行部分。根据接收到的逻辑部分的信号,完成跳闸、发出信号等动作。

1.2电力系统中继电保护的基本任务

继电保护是保证电力系统安全运行、提高经济效益的有效技术,其基本任务:

(1)自动的、迅速的、有选择性的将故障元件从电力系统切除,迅速恢复非故障部分的正常供电;

(2)能正确反映电气设备的不正常运行状态,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动调整;

(3)与供配电系统的自动装置,如自动重合闸装置ARD、备用电源自动投入装置APD等配合,根据电网运行方式,选择短路类型,选择分值系数,缩短事故停电时间,提高供电系统的运行可靠性。

1.3电力系统中对继电保护的基本要求

判断继电保护装置是否符合标准,必须在技术上满足以下条件:选择性、速动性、灵敏性和可靠性这四个基本要求。而对于其他一些较轻微的故障,继电保护要求也因此降低了,发生故障时可动作于发信号来满足保护条件即可。

(1)选择性

当电力系统中线路或设备发生短路故障时,负责本段线路胡设备的继电保护装置会动作,当其拒动时,会由相邻设备或线路的保护装置将故障切除;

(2)速动性

电力系统发生故障时,电力系统中继电保护装置应能够快速地将故障切除,防止对人或电力设备、公共财产造成不必要的伤亡损失降低设备的损坏程度,提高系统并列运行的稳定性;

(3)灵敏性

当电力系统中线路或设备发生短路故障时,电力系统保护装置的及时反应动作能力,能够满足灵敏性的要求的继电保护,在规定范围内发生故障时,不论短路点的短路的类型和位置如何,以及短路点是否存有过渡电阻,都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。电力系统中保护装置的灵敏度大小是由灵敏系数来衡量;

(4)可靠性

即是继电保护设备能够安全稳定的工作动作,不误动、不拒动是对继电保护装置最根本要求。

选择性、速动性、灵敏性和可靠性这四个基本要求既相互联系又相互制约,我们应视具体问题而定,辩证的利用这四个要求合理做出机电保护装置的设定。

2.继电保护发展历程与现状

电力系统的发展带动了继电保护的不断发展。在二十世纪初期,电力电网系统的发展,继电器广泛开始在电力系统的保护中应用,这个时期是继电保护装置技术发展的开端。自二十世纪五十年代到九十年代末,在四十多年的时间里,电力系统继电保护装置完成了发展的四个阶段,从电磁式继电保护装置到晶体管式的继电保护装置再到集成电路的继电保护装置及微机继电保护装置。

十九世纪后期,电力系统结构日趋复杂,电力系统的飞速发展,短路容量的不断增大,到二十世纪初期产生了作用于断路器的电磁型的继电保护装置。虽然在一九二八年电力电子器件已开始与保护装置相结合,但电子型的静态继电器的大量生产和推广,只是在当时五十年代晶体管与其他的固态元器件发展起来之后才能够得以实现。静态继电器具有较高的灵敏度及维护简单、作速度、寿命长、消耗功率小、体积小等优点,但容易受外界干扰和环境温度的影响。随后在一九五六年出现了应用计算机研发的数字式继电保护。大规模的模集成电路技术飞速发展,微型计算机和微处理机普遍的应用,极大地推动了数字式继电保护技术开发与研究,目前微机式数字保护技术正处于日新月异的研究与试验阶段,并已有少量装置已电力系统的容量逐渐增大,应用范围越来越广是当今电力电网企业所面临的一个重要问题,仅仅是将系统的各元件的继电保护装置设置完善,远远不能避免。电力电网中因长时间停电造成的事故与经济损失。当电力电网系统正常运行被破坏时,尽可能的将其影响的范围限制到最小,负荷停电的时间减小到最短这是电力系统保护的任务。因此必须从电力系统的全局出发,研究的故障元件被相应的继电保护装置动作并切除后,系统将呈现何种状况,如何尽快的恢复正常运行等等。此外,炉、机、电任一部分的故障都将影响到电能的生产安全,特别是在大机组和大电力系统中的相互协调和影响正成为电能生产安全的重大课题。因此,保证炉、机、电的安全运行已经成为继电保护的一项重要任务。

3.继电保护的未来发展方向

随着计算机技术、电子技术、通信技术的飞速发展,人工智能技术如遗传算法、人工神经网络、模糊逻辑、进化规模等相继在电力系统继电保护的领域研究中应用,电力系统继电保护技术已向网络化、计算机化、一体化方向不断发展。

3.1继电保护的计算机化

按照著名的摩尔定律,芯片上的集成度每隔18-24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。

我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2-0.3个百分点。

继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2继电保护的网络化

网络保护是计算机技术、通信技术、网络技术和微机保护相结合的产物,通过计算机网络来实现各种保护功能,如线路保护、变压器保护、母线保护等。网络保护的最大好处是数据共享,可实现本来由高频保护、光纤保护才能实现的纵联保护。另外,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以很容易就可实现母线保护,而不需要另外的母线保护装置。

电力系统网络型继电保护是一种新型的继电保护,是微机保护技术发展的必然趋势。它建立在计算机技术、网络技术、通信技术以及微机保护技术发展的基础上。网络保护系统中网省级、省市级和市级主干网络拓扑结构,以及分站系统拓扑结构均可采用简单、可靠的总线结构、星形结构、环形结构等。分站保护系统在整个网络保护系统中是最重要的一个环节。分站保护系统有两种模式:一是利用现有微机保护;另一个是组建新系统,各种保护功能完全由分站系统保护管理机实现。由于继电保护在电网中的重要性,必须采取有针对性的网络安全控制策略,以确保网络保护系统的安全。

3.3继电保护的智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中,近年来人工智能技术如专家系统、人工神经、网络、遗传算法、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确做出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3.4保护、控制、测量、数据通讯一体化

在实现继电保护的计算机化和网络化的前提下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它获得的任何被保护元件的信息和数据传送给网络控制中心或任意终端,即实现了保护、控制、测量、数据通讯一体化。如果将保护装置就地安装在室外变电站的被保护装置旁,则可以免除大量的控制电缆。

现在光电流互感器(OTA)和光电压互感器(OTV)已处于研究试验阶段,将来必然在电力系统继电保护装置中得到应用。

4.结论

随着电力系统的高速发展和计算机技术、网络技术和人工智能技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到综合自动化水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

[1]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

[2]陈向东.电力系统网络型继电保护模式探讨[J].电力信息化,2009,7(1):38-40.

[3]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[4]葛耀中.新型继电保护与故障测距原理与技术[J].西安:西安交通大学出版社,1996.

[5]吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,147(1):61-63.

继电保护基本原理及应用范文篇10

【关键词】县级供电企业;继电保护;管理体制

一引言

继电保护包括继电保护技术和继电保护装置,继电保护技术是一个完整的体系,主要由电力系统故障分析、继电保护原理及实现、继电保护配置设计、继电保护运行及维护等技术构成。继电保护装置就是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

二对继电保护装置的基本要求

1.选择性要求

当供电系统中发生故障时,继电保护装置应能有选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其他非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性;否则就称为没有选择性。

2.灵敏性要求

灵敏性是指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。保护装置灵敏与否,一般用灵敏系数来衡量。

3.可靠性要求

保护装置应能正确动作并随时处于准备状态。如不能满足可靠性的要求,保护装置反而成为了扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,则要求保护装置的设计原理、整定计算、安装调试要正确无误。同时,组成保护装置的各元件的质量要可靠、运行维护要得当、系统应尽可能简化有效,以提高保护的可靠性。

三继电保护管理体制设计原则

最有效的管理才是好的管理。针对目前县级供电企业人才短缺,继电保护技术力量分散等问题,县级供电企业应突破目前已经规定的岗位设置,采取集中力量,团队作业的方法,组建高效的管理队伍。因此对继电保护管理体制工作内容分配时要遵循以下原则。

1.工作职责细化原则

电力企业应首先根据部门职责进行以下划分:(1)继电保护管理人员招聘和选拔职能由人事管理部门负责。(2)继电保护施工管理、定值管理和监督管理必须打破现有规定的分离制度,建立一个新的核心部门全面专业地负责上述三项继电保护工作,该组织可以称为继电保护班或继电保护科。

2.工作内容细化分工原则

继电保护工作面广,一般涉及10个以上变电站、3种以上厂家设备类型,工作的好坏直接影响电网的安全稳定运行,因此工作内容必须细化到人。

3.管理等级明确原则

继电保护管理总负责分管给生产经理或总工程师;继电保护班归属变电工区或检修部门,下面分设施工组、变电运行培训管理组和定值计算管理组,各组长直接受继电保护班长管理,具体工作中可及时采取矩阵制交叉安排,另设立继电保护监督工程师为副班长一职,全面负责继电保护监督工作,并主管继电保护定值管理组和继电保护培训组。

四继电保护工作分析与岗位设置

县级供电企业继电保护管理体制包括以下内容:继电保护管理人员招聘和选拔、继电保护定值管理、继电保护监督管理、继电保护施工管理、继电保护工作培训、继电保护工作考核管理。

结合实践和以上介绍来看,县级供电企业继电保护管理工作主要由三大部分组成。一是继电保护工作中的监督管理,二是电网定值计算管理,三是继电保护定值调试管理。三者缺一不可,必须相辅相成,才能保证继电保护管理工作不出问题。新的体制把这三部分工作都安排在继电保护班,由继电保护班全面专业负责,解决了县级供电企业继电保护力量分散的问题,形成了继电保护工作的核心团队,更容易达到“帕累托最优”,使工作关系和谐。

供电企业、电力生产企业的新体制下设专职技术监督工程师和相应的技术监督小组,在总工程师领导下从事技术监督工作。继电保护技术监督工程师应具有相应的专业知识和实践经验,继电保护技术监督队伍应保持相对稳定。网调、中调、网内省调应设立调度、运行方式和继电保护科。地区调度所和一级制的调度所应根据具体情况设立调度组、运行方式组或运行方式专责人员。根据实际情况设继电保护组或继电保护专责人员。

在电力生产上,现有有关规程和文件对继电保护管理分工是明确具体的,但县级供电企业目前继电保护管理混乱局面的形成,主要是因为没有相应的继电保护人才和上用人制度混乱以及无法按工作流程建立完善的继电保护管理体制造成的。因此各县级供电企业首先必须采用优化原理方法,从人才入手,突破以上文件、规程规定,重新按新组合体制进行岗位设置,解决继电保护人才短缺这一困绕企业继电保护管理的问题。从根本上讲,为解决继电保护人才短缺情况,必须确立达到继电保护管理目的的最优方法,确定需要专业人员的数量,才能达到效率最大或人力成本最小。

继电保护基本原理及应用范文篇11

【关键词】电力系统;继电保护;实际应用

引言

近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1、电力系统继电保护应用现状

20世纪60年代是晶体管继电保护技术开始的到发展。70年代中期起,基于集成运算放大器的集成电路保护开始投入研究,到80年代末集成电路保护技术逐渐取代晶体管保护技术,集成电路保护技术生产、应用持续到90年代初。此时,我国从70年代末开始进行计算机继电保护的研究,这一研究工作在高等院校和科研院所起到先导作用,成功研制了不同原理、不同类型的微机保护装置。在1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护电力系统的推广开辟了道路。在主设备保护方面,关于发电机失磁保护和发电机保护——变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继研究成功,为不同原理、不同机型的微机线路保护装置,为电力系统提供了新一代性的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

2、电力系统中继电保护的配置的应用

2.1电力系统继电保护装置的任务

继电保护主要是利用当电力系统的原件发生短路时,电气量的变化来构成继电保护动作。继电保护装置的任务可以在供电系统运行正常时完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据,如果供电系统发生故障时,就可以自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行,当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。

2.2继电保护装置的基本要求

2.2.1继电器的选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除?首先断开距离故障点最近的断路器,以保证系统中其他非故障部分能继续正常运行。

2.2.2继电器的灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

2.2.3继电器的速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

2.2.4继电器的可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

3、电力系统继电保护发展趋势

继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护,控制装置和调度联网以共享全系统数据,信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台PC的功能。为保证系统的安全运行,各个保护单元与重合装置必须协调工作,因此,必须实现微机保护装置的网络化,这在当前的技术条件下是完全可行的。在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

4、继电保护装置的实际应用

对继电保护装置应按照《继电保护和电网安全自动装置检验条例》要求的项目要求进行检验;一般对10kV~35kV用户的继电保护装置,应该每两年进行一次检验,供电可靠性较高的35kV及以上用户要每年进行一次检验。由于全数字继电保护测试装置具有数字化、模块化、小型化、嵌入式人机界面等功能,主要技术特点为高压保护、测量装置等,满足IEC61850-9-1标准的数字量信号的情况下,从硬件结构和软件设计实现觉得保护装置的全数字操作目标。整机采用两套DSP+CPLD分别作为信号发生和人机监控模块,其中主控DSP系统采用以太网模块和自定义的内部通信协议,通过模块间内部CAN通讯接口传输测试数据,而监控DSP系统赋予了整机人机交互和保护自检功能。该装置能够满足新型微机保护装置研发中对数字量继电保护测试数据的需要。

改革开放30多年来,我国电网的继电保护技术均已达到先进水平,通过电网安装后的实际应用,系统在电网安全运行方面发挥了重要作用。在电网的继电保护系统主要由网、省、地级电力调度中心,各级电厂、变电站端的子站及录波装置通过电力信息传输网络共同组成。系统设计目的是能够切实提高电网的信息化和智能化,并具有高安全性和高可靠性,要优先采用电力调度数据网络,保障故障录波数据上传。因此系统具有分层、分布、开放、易扩展的特性。该系统实现了事故画面、汇总、网络探测和跨安全区应用的技术创新,至投入使用以来,经历了夏季高温用电高峰、暴风雨,冬季冰雪等突发事件的检验,结果表明继电保护装置能够较好的保证电网的安全运行。

5、结束

在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,严格按照规定实施,要按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能保证供电的可靠性。

参考文献

继电保护基本原理及应用范文1篇12

关键词:继电保护技术;电力系统;应用

中图分类号:TM63文献标识码:A

引言:近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1.继电保护发展的现状

上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

2.电力系统继电保护装置的基本要求

(1)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。(2)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。(3)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。(4)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3.继电保护技术的配置和运用

3.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。

3.2继电保护装置的基本原理

电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。

3.3继电保护装置的运用

工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。

(1)线路保护,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。(4)主变保护,包括主保护(重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

4.电力系统继电保护发展趋势

4.1网络化发展趋势

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的数据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。

4.2继电保护智能化

智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。

4.3控制、保护、数据通信、测量一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。

电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。

5.结语

总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。

参考文献: