希望给予同行带来一定的参考价值。
关键词:电力系统继电保护技术与应用
中图分类号:TM7文献标识码:A文章编号:
前言
当今,电力已作为现代社会的主要能源,与国民经济建设和人民生活有着极为密切的关系,然而供电不稳定,特别是大面积停电事故所造成的经济损失和社会影响是十分严重的。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。
1继电保护发展现状
上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
2继电保护的基本原理
继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
3电力系统中继电保护的配置与应用
3.1继电保护装置的任务
继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。
3.2继电保护装置的基本要求
(1)选择性
当供电系统中发生故障时,应断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。
(2)灵敏性
保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
(3)速动性
保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。
(4)可靠性
保护装置不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性
3.3保护装置的应用
继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。
另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。
4变电站微机保护配置的应用实例
2006年,某公司成功将一个传统电磁式继电器保护的35kV变电所改造成微机保护装置系统的终端变电站。
(1)系统保护装置及监控系统
①系统保护装置。线路保护装置、主变保护装置——可完成变压器的主、后备保护、综合保护装置、线路保护装置、电容器保护装置、备用电源自投装置、小电流接地检测装置、综合数据采集装置。
②监控系统的基本功能——数据采集、控制操作、画面制作、监视显示、事故处理、制表与打印。
(2)系统设计时的注意问题
①由于控制和保护单元都是采用微机装置,故一些必要的开关量和模拟量应从开关柜或户外设备引至微机采集、保护屏。根据控制和保护要求的不同,输入的量也不同。
②开关柜与微机装置之间的端子接线较简单,大量的二次接线在微机采集控制单元和保护单元内部端子连接。传统的继电保护整定计算结果不能直接输入到计算机,须转换为计算机整定值。
(3)应用效果
①该变电所投产运行后,除开始操作人员对微机系统不熟悉原因,使用过控制保护单元的紧急手动按钮外,基本上都在微机装置和监控计算机上操作,整个系统运行良好。
②线路及站内设备的继电保护均采用计算机采集、运算、判断,反应灵敏、迅速,在设备或线路有故障时可靠切除故障点。
③各种设备微机保护的配置齐全完善,能完美解决继电保护短线路及运行方式变化大时的各级保护的配合问题,因此该站正常运行后可靠性比原来显著提高,基本杜绝了越级跳闸的发生。
5继电保护装置的发展,局限性及其现阶段的应用范围
继电保护原理的发展是从简单的电流保护逐步向复杂的距离保护和高频保护过度的。继电保护装置的发展则依赖于构成继电保护装置元器件技术的发展。其发展大致经历了四个阶段,即从电磁型、晶体管型、集成电路型到微机型保护的发展历程。传统的电磁和电磁感应原理的保护存在动作速度慢、灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、判据不准确、装置本身的质量不是很稳定等明显的缺点。
继电保护系统在电力系统中起着开关或警报的作用,我们可以将该原理称为开关原理。现阶段,我们习惯性的将继电保护系统认定为高压、低压的电力输电系统的保护系统。然而,继电保护的这一开关原理已经广泛应用于大部分的电路、电器、电子等高压、低压、强电、弱电等技术领域。因为每个继电保护系统所要保护的对象不同,所以需要采用的保护装置也要相应的加以选择,以达到功能与成本的匹配。
6小结
除上述几点外,要保证继电保护专业的安全运行,还有很多基础的工作要做,必须在继电保护的现场运行,维护,校验,规程编制上狠下工夫,才能有效地保证继电保护和安全自动装置的正确动作,提高其正确动作率。
参考文献
关键词:异步电动机保护装置控制
异步电动机的保护是个复杂的问题。在实际使用中,应按照电动机的容量、型式、控制方式和配电设备等不同来选择相适应的保护装置及起动设备。
电动机的保护与控制关系
电动机的保护往往与其控制方式有一定关系,即保护中有控制,控制中有保护。如电动机直接起动时,往往产生4—7倍额定电流的起动电流。若由接触器或断路器来控制,则电器的触头应能承受起动电流的接通和分断考核,即使是可频繁操作的接触器也会引起触头磨损加剧,以致损坏电器;对塑料外壳式断路器,即使是不频繁操作,也很难达到要求。因此,使用中往往与起动器串联在主回路中一起使用,此时由起动器中的接触器来承载接通起动电流的考核,而其他电器只承载通常运转中出现的电动机过载电流分断的考核,至于保护功能,由配套的保护装置来完成。
此外,对电动机的控制还可以采用无触点方式,即采用软起动控制系统。电动机主回路由晶闸管来接通和分断。有的为了避免在这些元件上的持续损耗,正常运行中采用真空接触器承载主回路(并联在晶闸管上)负载。这种控制有程控或非程控;近控或远控;慢速起动或快速起动等多种方式。另外,依赖电子线路,很容易做到如电子式继电器那样的各种保护功能。
电动机保护装置
电动机的损坏主要是绕组过热或绝缘性能降低引起的,而绕组的过热往往是流经绕组的电流过大引起的。对电动机的保护主要有电流、温度检测两大类型。下面结合产品作些介绍。
1.电流检测型保护装置
(1)热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效
的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器;从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JRl6型。
(2)带有热—磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠,故日前仍被大量采用.特别是小容量断路器尤为显著。例如从ABB公司引进的M611型电动机保护用断路器,国产DWl5低压万能断路器(200—630A)、S系列塑壳断路器(100、200、400入)。
(3)电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点是:
①多种保护功能。主要有三种:过载保护,过载保护十断相保护,过载保护十断相保护+反相保护。
②动作时间可选择(符合GBl4048.4—93标准)。
标准型(10级):7.2In(In为电动机额定电流),4—1Os动作,用于标准电动机过载保护,速动型(10A级):7.2In时,2—1Os动作,用于潜水电动机或压缩电动机过载保护。慢动型(30级):7.2In时,9—30s动作,用于如鼓风机电机等起动时间长的电动机过载保护。
③电流整定范围广。其最大值与最小值之比一般可达3—4倍,甚至更大倍数(热继电器为1.56倍),特别适用于电动机容量经常变动的场合(例如矿井等)。
④有故障显示。由发光二极管显示故障类别,便于检修。
(4))固态继电器它是一种从完成继电器功能的简单电子式装置发展到具有各种功能的微处理器装置。其成本和价格随功能而异,最复杂的继电器实际上只能用于较大型、较昂贵的电动机或重要场合。它监视、测量和保护的主要功能有:
①最大的起动冲击电流和时间;
②热记忆;
⑤大惯性负载的长时间加速;
④断相或不平衡相电流;
⑤相序;
⑥欠电压或过电压;
⑦过电流(过载)运行;
⑧堵转;
⑨失载(机轴断裂,传送带断开或泵空吸造成工作电流下跌);
⑩电动机绕组温度和负载的轴承温度;
⑩超速或失速。
上述每一种信息均可编程输入微处理器,主要是加上需要的时限,以确保在电动机起动或运转过程中产生损坏之前,将电源切断。还可用发光二极管或数字显示故障类别和原因,也可以对外向计算机输出数据。
(5)带有电子式脱扣的电动机保护用断路器其动作原理类同上述电子式过电流继电器或固态继电器。功能主要有:电路参量显示(电流、电压、功率、功率因数等),负载监控(按规定切除或投入负载),多种保护特性(指数曲线反时限、I2t曲线反时限、定时限或其组合),故障报警,试验功能,自诊断功能,通信功能等。产品如施耐德电气公司生产的M系列低压断路器。
(6)软起动器软起动器的主电路采用晶闸管,控制其分断或接通的保护装置一般做成故障检测模块,用来完成对电动机起动前后的异常故障检测,如断相、过热、短路、漏电和不平衡负载等故障,并发出相应的动作指令。其特点是系统结构简单,采用单片机即可完成,适用于工业控制。
2.温度检测型保护装置
(1)双金属片温度继电器它直接埋入电动机绕组中。当电动机过载使绕组温度升高至接近极限值时,带有一触头的双金属片受热产生弯曲,使触点断开而切断电路。产品如JW2温度继电器。
(2)热保护器它是装在电动机本体上使用的热动式过载保护继电器。与温度继电器不同的是带2个触头的碗形双金属片作为触桥串在电动机回路,既有流过的过载电流使其发热,又有电动机温度使其升温,达到一定值时,双金属片瞬间反跳动作,触点断开,分断电动机电流。它可作小型三相电动机的温度、过载和断相保护。产品如sPB、DRB型热保护器。
(3)检测线圈测温电动机定子每相绕组中埋入1—2个检测线圈,由自动平衡式温度计来监视绕组温度。
(4)热敏电阻温度继电器它直接埋入电动机绕组中,一旦超过规定温度,其电阻值急剧增大10—1000倍。使用时,配以电子电路检测,然后使继电器动作。产品如JW9系列船用电子温度继电器。
保护装置与异步电动机的协调配合
为了确保异步电动机的正常运行及对其进行有效的保护,必须考虑异步电动机与保护装置之间的协调配合。特别是大容量电网中使用小容量异步电动机时,保护的协调配合更为突出。
1.过载保护装置与电动机的协调配合
(1)过载保护装置的动作时间应比电动机起动时间略长一点。电动机过载保护装置的特性只有躲开电动机起动电流的特性,才能确保其正常运转;但其动作时间又不能太长,其特性只能在电动机热特性之下才能起到过载保护作用。
(2)过载保护装置瞬时动作电流应比电动机起动冲击电流略大一点。如有的保护装置带过载瞬时动作功能,则其动作电流应比起动电流的峰值大一些,才能使电动机正常起动。
(3)过载保护装置的动作时间应比导线热特性小一点,才能起到供电线路后备保护的功能
。
2.过载保护装置与短路保护装置的协调配合一般过载保护装置不具有分断短路电流的能力。一旦在运行中发生短路,需要由串联在主电路中的短路保护装置(如断路器或熔断器等)来切断电路。若故障电流较小,属于过载范围,则仍应由过载保护装置切断电路。故两者的动作之间应有选择性。
短路保护装置特性是以熔断器作代表说明的,与过载保护特性曲线的交点电流为Ij,若考虑熔断器特性的分散性,则交点电流有Is及IB两个,此时就要求Is及以下的过电流应由过载保护装置来切断电路,Ib及以上直到允许的极限短路电流则由短路保护装置来切断电路,以满足选择性要求。显然,在Is—IB范围内就很难确保有选择性.因此要求该范围应尽量小。从现行IEC标准规定来看,极限值为Is=O.75Ij,Ib=1.25IJ。目前过载保护装置的额定接通和分断能力均按0.75IJ考核,显然偏低一些,从IEC标准修改的动向,今后有可能按IJ考核,以提高其可靠性。因此上述的协调配合应既考虑其选择性,又考虑其额定接通和分断能力。
【关键词】微机保护;电力系统;选用
随着计算机技术和我国国民经济的持续快速发展,微机保护装置以其具有强大的数据处理能力、自检功能、使用方便、易于事故分析、节省了二次控制设备的安装空间等优点在电力系统中得到了广泛应用,成为继电保护发展的必然趋势。如何合理选好且用好微机保护装置,不仅关系到10kV电力系统运行的安全性、可靠性、稳定性,而且关系到变电所初期的投资成本和今后运行的经济效益。
1.微机继电保护装置的性能特点
1.1改善和提高保护性能,动作正确率高
由于微型机的应用,可以采用一些新原理和方法,解决一些常规保护难以解决的问题,因此保护性能很容易得到改善和提高。微机保护装置软件计算具有实时性特点,在电力系统发生故障的暂态时期内,就能正确判断故障,当故障发生变化或进一步发展,也能及时判断和自纠,其运行正确率很高已在运行实践中得到证明。
1.2可靠性高
可靠性是对继电保护装置的基本要求之一。微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。它能够自动检测出本身硬件的异常部分,配合多重化可以有效地防止拒动;同时,软件也具有自检功能,对输入的数据进行校错和纠错,即自动地识别和排除干扰,因此可靠性很高。
1.3灵活性大
由于微机保护的特性主要由软件决定,因此替换改变软件就可以改变保护的特性和功能,特别是进口保护以逻辑图管理的方式,用户可以根据电力系统的实际需要进行组合并编程,以实现过流、速断、重合闸、温度、瓦斯等等不同的保护功能,且软件可实现自适应性,依靠运行状态自动改变整定值和特性,从而可灵活地适应电力系统运行方式的变化。
1.4易于获得附加功能
常规保护装置的功能单一,仅限于保护功能,而微机保护装置除了提供常规保护功能外,还可能提供一些附加功能,通过打印机、显示器可以提供电力系统故障前、后的多种信息。如:保护动作时间和各部分的动作顺序记录,故障类型和相别及故障前后电压和电流的波形记录等,对于线路保护,还可以提供故障点的位置,这将有助于运行部门对事故的分析和处理;还可方便地附加低频减载、自动重合闸、故障录波、故障测距及测量电流、电压、有功、无功等功能。
1.5调试维护方便
在微机保护装置应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均可由相应的软件来实现。
1.6有利于实现综合自动化
微机保护装置都具有通讯功能,与变电站微机监控系统的计算机联网后,就可将保护装置纳入变电站综合自动化系统,能够对微机保护装置实现远方监控。把10kV配电柜中的断路器、接地刀、手车等主要元件的状态输进微机保护,这样就可以对配电设备进行远方监控,就很方便的实现配网自动化,还可以实现无人或少人值班。
1.7二次电路设计简单
微机保护的各种功能由软件来实现,二次电路设计只与测量、控制及信号回路的输入与输出有关,与保护功能关系不大,二次电路设计就可得到简化,而且微机保护代替了传统的电流继电器、中间继电器、信号继电器、测量表等元件,大大减少了二次元件的数量,节省了安装空间。
2.微机继电保护装置选用原则
(1)所选用的微机保护装置首先应满足我国的电力行业标准《DL/T769-2001电力系统微机继电保护技术导则》以及国家标准《GB/T14285
-2006继电保护和安全自动装置技术规程》。原则上优先选用具有成熟运行经验的微机保护装置,并应积极创造条件支持新产品的应用。
目前,在10kV电力系统中进口和国产的微机保护均已取得了大量的应用,具有代表性的产品有:ABB公司的馈线保护SPAJ140C、分段自切REF543,美国SEL公司的馈线保护SEL-551、分段自切SEL-351A和SEL-35155,德国西门子公司的纵差保护7SD610,施耐德公司的馈线保护S20、变压器保护T20、电动机保护M20的Sepam20或40系列、分段自切Sepam80系列,AREVA公司的馈线保护MicomP123、MicomP142和MicomP922(低频减载),南京南瑞继保护公司的馈线RCS-9611C、RCS-9611A、电容器保护RCS-9631C、分段自切RCS-9651C和RCS-9611C,北京四方公司的馈线保护CSC211、主变保护CSC241E、分段自切CSC-246和CSC211,许继电气股份有限公司的馈线保护WXH-822C/F1、分段自切WBT-821C和WXH-822C/F2(低频减载),上海久创电气自动化设备有限公司的DigiproII系列等等。
(2)按照国家标准《GB50062-
2008电力装置的继电保护和自动装置设计规范》的相关规定,根据微机保护装置所要保护的不同对象及应用场所来选择具体的型号。如选用施耐德公司的Sepam20系列,原则上在用作电动机保护时应选择Se-
pamM20、变压器保护时应选择SepamT20,馈线保护应选择SepamS20。但有时从经济角度考虑,也可适当变通变压器保护也可选S20,因为T20比S20多了一温度传感器以实现温度保护,在国内此功能根本不用,而温度保护是直接通过变压器外壳上的温度控制器温度接点以及RS485接口上传至自动化装置屏以实现温度保护的,所以对选用S20完全能满足配变保护的要求,而且S20比T20每只要便宜1500.00元。
(3)根据当地供电部门审批的一次系统主接线及继电保护配置的要求和有关规定进行微机保护的选用。
(4)如变电站实现无人或少人值班的综合自动化变电站,继电保护应当配备通讯接口和一定数量的输入输出接点。这种情况下,建议不宜选用ABB公司的SPAJ140C,因为它的输入输出接点数量很少,又不可另外加装。而当选用施耐德公司的Sepam系列时一定要注明加装MES114等输入输出接点和ACE949-2通讯接口。
(5)10kV电力系统中在选用SF6气体绝缘的NxplusC、8DH10等仪表箱尺寸较小的配电柜时,在配置继电保护时优先选用安装尺寸小、功能全面的微机保护装置,以节省二次元件的安装空间。
3.选用微机保护应注意的问题
虽然微机保护的性能比传统的继电器优越了很多,但其价格也贵出了许多,一般少则几千元多则几万元,所以微机保护一定要用在需要用的地方,如配置不合理、功能使用不全面,不仅造成资源上的浪费,也给配电用户造成了很大的经济损失。
3.1二次电路设计
(1)电能表和测量仪表选配
微机保护计算的有功和无功电能,可以作为内部核算的依据,不进行电能计费时不需另设电能表。微机保护均具有电流测量功能,可通过液晶显示屏就地显示,也可通过保护装置的通讯接口,传送到计算机系统进行显示和打印。所以若无特殊要求,10KV开关柜上可以不再另设各种测量仪表。但在选用无采集电压信号的微机保护如施耐德Sepam20时,根据需要装设多功能表。
(2)防跳功能选择
设计控制回路时断路器和微机保护防跳功能只能选一,具体根据各供电局规定,一般上海地区采用断路器内部防跳。常用的进口微机保护如SEL、Micom等都不带防跳功能,控制回路采用断路器防跳功能;而选用一些国产保护时就要特别注意微机保护是否有防跳功能,如南京南瑞保护RCS-9611A有防跳功能,设计时采用断路器防跳,在订货时要特别注明取消防跳功能,如上海久创的DigiproII系列只要它的D3-D5端子不接进控制回路,就可以采用断路器防跳。
(3)二次回路电源的保护
据规程要求,各独立安装单位的二次回路的操作电源,均经过专用的保护元件,由于熔断器使用简单、更换方便、价格经济,有着广泛的应用范围。但当采用微机保护实现无人或少人值班方案时,应当采用微型断路器进行保护。
3.2压变柜中微机保护的选用
一般小型变电所如厂用电和10kV小区变电站,压变柜中只要配测量仪表,而在35kV基建站中10kV需要低频减载功能时,压变柜中要配微机保护装置如AREVA公司的MicomP922。
3.3工作电源的选用
一般小型变电所如厂用电10kV配电所,从经济角度考虑,一般不设直流屏,操作电源引自压变柜的PT经变压器变出的AC220V电源。但为了保证事故时断路器能可靠跳闸,所以选用微机保护装置时,最好在10kV压变柜中加装提供不间断电源的装置。如保护工作电源采用AC220V,可加一只UPS稳压电源装置;如保护工作电源采用DC110V可加一只小型的直流电源装置,如厦门协成的XCD3。
4.结语
在10kV电力系统中采用微机保护装置,将大大提高变电站运行的可靠性、安全性、提高供电质量,有利于实现变电站综合自动化,实现无人或少人值班,这是电网智能化发展的必然趋势。不过,工程设计人员在选用微机保护装置时,必须具有一种严谨的科学态度,在熟悉微机保护装置的型号、原理、适用范围、性能特点等的情况下,遵循选用原则并结合工程实践经验作出合理的选型,设计出与微机保护相匹配且保护功能使用全面的图纸。唯有这样,微机保护装置在10kV电力系统中才能得到合理的应用。
参考文献
[1]中华人民共和国能源部.电力装置的继电保护和自动装置设计规范GB50062-2008[S].中华人民共和国建设部,2008.
[2]周武仲.继电保护与自动装置应用200例[M].中国电力出版社,2009:76-78.
随着社会市场经济的发展,我国的电力需求在不断的增长,电力网络的建设规模及质量在不断的提升,这就直接导致了电网结构的复杂化,作为电网建设及运行过程中必不可少的组成部分,继电保护装置对于电网的正常运行具有非常重要的作用,一旦电网中出现故障,继电保护装置对于整个电网都具有非常重要的保护作用,本文就结合继电保护装置的主要特点及其配置原则,对于其整定计算的计算思路进行简单分析,有利于整个电网的正常工作。
【关键词】电网架构继电保护装置整定计算
电力网络在运行的过程中,受到各种因素的影响,出现相关的故障是难以完全避免的,一旦出现故障,整个电力网络的正常运行会受到非常严重的影响,为了对电力网络实施有效的保护,对其进行有效的继电保护配置是非常重要的,合理的继电保护装置配置能够在电网出现故障时,迅速的将相关的故障设备进行切除,保证其他电力网络线路不受影响,并且能够实现自动报警功能,对于保证整个电力网络的正常运行具有非常重要的作用,要想继电保护装置能够实现这一系列的功能,最重要的就是要保证其配置的合理性,本文就对其配置整定计算进行简单分析。
1继电保护配置的简单分析
1.1继电保护在电网中的作用
在电力系统的运行过程中,继电保护是非常重要的组成部分,当电力系统发生故障时,会对电网的正常运行产生较大的影响,可能引起严重的安全事故,在对电网运行稳定性造成严重影响的同时,还会导致电网中相关电力设备的使用寿命的降低,一旦电网出现故障,保护配置不当,会引起大范围停电或设备损坏,造成较大的经济损失的同时,还会对人们的正常生产生活造成较严重的影响。
继电保护快速动作切除故障,对保证电网稳定运行起着举足轻重的作用。目前,高压电网中根据暂态稳定计算结果,需同时满足功角稳定、电压稳定、频率稳定这三个判据,才认为系统满足稳定条件。这就对继电保护的灵敏性、选择性、速动性和可靠性提出了更高要求。(1)、电网故障时,继电保护应该立即做出反应,将故障元件从电网中隔离,迅速恢复无故障部分的正常运行;(2)一旦电网中的设备及线路运行过程中出现异常情况,保护装置能够即时报警;(3)依据故障的实际情况,应该能够在最短的时间内恢复该部分的供电。
1.2继电保护的配置原则
在电网继电保护系统配置的过程中,应该遵循以下的基本原则:(1)充分考虑保护对象的电压等级,不同电压等级对于继电保护的要求有所不同的(2)充分考虑被保护对象的故障特点,判断相关的保护对象是否工作于异常状态下;(3)在能够保证系统的安全性能的基础上,尽量简化二次回路的接线设计。
220KV电网继电保护,应采用双重化配置,保护动作时间应满足系统稳定运行的要求。
(1)220KV线路保护应装设两套全线速动保护,采用近后备方式。两套完整的后备保护(相间、接地距离、零序保护以及重合闸功能);系统需要配置过电压保护时,配置双重化的过电压及远方跳闸保护。过电压保护应集成在远方跳闸保护装置中,远方跳闸保护采用一取一经就地判别方式;配置分相操作箱及电压切换箱。
(2)220KV主变配置双重化的主、后备保护一体的变压器电气量保护和一套非电量保护。
(3)220KV应配置双套含失灵保护功能的母线保护,每套线路保护及变压器保护各启动一套失灵保护。
110KV电网继电保护一般采用单套配置。
(1)110KV线路保护采用远后备方式,一般配置三段式相间、接地距离,四段式零序过流保护及重合闸。当线路长度小于10km,或网络特殊需要时,需配置线路纵联差动保护。
(2)110KV主变配置主、后独立的一套变压器电气量保护和一套非电量保护。
35Kv及以下电网继电保护一般配置一套阶梯过流III段保护及重合闸。
2基于电网架构的继电保护配置的整定计算
整定计算主要是依据相关的网络计算工具,对具体的电力网络中的相关参数进行分析、计算,以此得到保护装置中相关参数的值,以便于在电力网络中进行合理的继电保护装置配置,在实际的应用当中,整定计算主要是对已经配置好的保护装置的运行定值来进行计算,这对于提升电力网络保护系统的配置合理性具有非常重要的作用,在整个电力网络中的继电保护系统的运行过程中,整定计算是一项非常重要的工作,对于继电保护装置的正常运行具有非常重要的作用。
2.1继电保护配置整定计算工作的最基本的要求
随着电力行业的快速发展,电力网络的建设规模及建设复杂性在不断的增加,在其继电保护装置的配置过程中,要保证其配置的合理性,需要借助于整定计算,给出合理的运行定值,这对于继电保护装置的正常运行是非常必要的,在其整定计算的过程中,对其所给出的定值的最基本的要求是能够平衡好速动性、可靠性、选择性、灵敏性等各种性能之间的关系,在实际的整定计算的过程中,要求在各种定值计算方案中选择最佳的计算方案,要尽可能大的满足这几个基本性质的要求。
在继电保护配置的整定计算的过程中,在进行保护灵敏度校验、最大负荷值预测、短路计算等工作中,要对其值进行合理的计算,首要的工作就是要确定合理的运行方式,这对于整定计算的计算结果、继电保护装置的合理配置都具有非常大的影响。在整个整定计算的过程中,需要应用到大量的计算参数,如互感器参数、零序阻抗参数等,不管是在哪个具体的计算过程中,保证各个参数的正确性是非常重要的,只有保证了计算参数的正确性,才能保证各个计算结果的正确性。
2.2继电保护配置整定计算的主要计算任务
在继电保护配置整定计算的过程中,首要的计算任务就是要确定出有效的系统保护方案,在电网的继电保护工作中,如果应用成型的微机保护产品,其中会包含着非常多的保护功能,但是在实际的应用工作中,很多保护功能是没有实际的应用价值的,这就需要相关的设计人员,依据电力网络运行的实际特点,借助于整定计算,确定系统中那些保护功能是电力网络所需要的。并且,所有的继电保护装置中都含有数量较多的电气元件,并且每个电气元件的灵敏性、选择性以及作用都是不尽相同的,在实际的应用中,要通过整定计算来处理好各个继电保护功能之间的良好配合关系。继电保护装置各个装置之间的良好配合对于整个继电保护系统的正常工作也具有非常重要的作用,而这种配合关系的协调也需要通过整定计算来完成,在实际的计算过程中,可以通过短路电流计算得到某个保护装置与其相邻的保护装置在灵敏度及动作时间上的配合关系,如果电力系统中出现一定程度的故障,故障线路的继电保护的灵敏度高于其上一级的相邻线路,这就能够有效的保证整条电力线路的安全稳定性性能,具有非常好的保护作用。
2.3继电保护配置整定计算的计算机实现
随着计算机技术的快速发展及广泛应用,很多先进的计算机软件应用于继电保护配置整定计算中,这对于计算效率及计算质量的提升都具有非常重要的作用,对其计算机实现进行简单分析:(1)自定义规则的实现,随着电力网络规模及结构的复杂化,在其运行的过程中,随着其电网结构的变化,继电保护配置方式也会随之出现相应的改变,这使得整定计算工作中,其整定规则也在不断的发生着变化,很多整定规则不具备普遍适用的特点,为了保证整定工作的灵活性及可靠性,整定计算人员都会通过自定义规则来有效的实现一定程度的人机干预功能,这对于计算质量的提升具有积极的作用;(2)数据库技术的应用,在整定计算工作,需要处理的数据是多种多样的,在整个计算的过程中,既要对中间的计算结果进行保存,有效对最终的定值进行输出,并要能够实现用户的删除、修改、添加、查询等各种数据操作,这对于计算软件的功能要求是非常的高,为了能够很好的满足这一要求,相关的计算软件具备功能强大的数据库引擎是非常必要的,并能够在计算的过程中,实现相关数据的快速、准确的调用是非常重要的,这对于整个整定计算具有非常重要的作用。
与我国的继电保护配置整定计算发展水平相比,国外的继电保护整定计算研究更早,其技术水平也较高,除了计算方法上具有较多的先进研究之外,其在整定计算的计算机软件研究上也比较多,这对于整定计算计算效率的提升具有积极的作用。
3结束语
继电保护装置是电网运行过程中非常重要的组成部分,对于电网的安全运行具有非常重要的作用,本文就结合继电保护装置的主要特点及其配置基本原则,对电网中的继电保护配置的整定计算进行了简单分析,对于其继电保护装置的合理配置具有非常重要的作用。
参考文献
[1]何必涛.浅谈电网继电保护配置及整定计算[J].广东科技,2013(3).
[2]覃丙川,刘东平.220kV电网继电保护整定计算简化的实践与探讨[J].广西电力,2010(6).
[3]王靖满.直流牵引供电系统继电保护配置及整定的探讨[J].电气化铁道,2010(12).
随着社会的不断发展,各国之间的竞争也是日益激烈,经济、政治、文化等各方面的全面发展是世界各国竞争的重要内容。其中,安全和稳定是各国首要抓好的重要任务。随着经济发展的需要,人们对电力的需求越来越大,这极大的推动了电力行业的发展,但是电能本身属于一种危险的资源。有一个非常值得大家关注的事情,那就是2003年8月14日下午,美国纽约、底特律和克利夫兰以及加拿大渥太华等多个城市发生停电事故。事后发现,事故发生的原因竟然是两根高压线一根因树枝碰到而至电力线路跳闸,另一条则是安全装置的误动。这件事情给我们每一个人敲响了安全的警钟,虽然电力的使用确实给人类带来很多方便,但是也存在很多隐患,扩大了电力供求市场的规模,改善了电力配置的一旦在输送过程中产生故障或者使用得不科学,很可能导致大面积的电路短路,严重点的甚至会产生漏电现象,严重威胁人们的生命安全。因此,我们应该切实研究电路可能发生的故障,并深入了解继电保护装置的各种技术手段,让电力更多的为人们服务。
1电力线路的介绍
电力系统是检验国家安全性和稳定性是否良好的重要标杆。电力系统是发电机、变压器、开关配电装置、电力线路等运行的各个环节构成的有机整体,同时包括相应的远动通信、电测计量、继电保护等装置。电力线路的完好是保证电力系统正常运行的重要保证。这要求必要的电力设备必须在不超过门槛允许的电流、电压以及时间内运行。因此,对电力线路故障的分析和保护配置的认识就显得格外重要。
2电力线路的故障
针对导致电力线路故障的因素主要有以下几方面:①在天气比较恶劣的时候,天空中会飘散出一些悬浮的物件,当这些物件落在了电力线路上的时候就很容易产生危险。例如:一些金属物等落在线路上,很容易会对线路造成短路,如果是塑料或者破袋子这些物体落在电网上,会由于局部的散热情况不好而引发出温度过高造成危险;②鸟类、鸟粪等对带电的设备危害也很大,容易对电路造成短路等危险;③一些外力的破坏对电路也会造成短路,容易给电力的传输带来麻烦,如今,随着城市化建设的加快,市政工程也在不断的建设,其中一些市政排水工程在开挖过程中,就很容易造成对电缆的破坏或者是吊车碰撞线路等情况;④电力线路建设在施工过程中,由于存在一些施工技术原因的限制,会使得施工质量有所不同,比如有些线路截面过小或者是在施工中有引线、线夹等等连接处不够牢固的时候,就会导致导线发热严重,在比较弱的地方就会烧断导线、线路造成熔丝熔断,引起短路和停电等。还有就是设备老化的原因也特别常见。比如一些变压器长时间过载运行或是长时间缠绕会使得线圈内部发热受潮,绝缘性能下降,进而发生短路的想象。还有就是接地装置在地下长时间深埋,容易造成零部件腐蚀,使得电阻变大,当遇到雷电击中以后,也不能很快地将电流导进地面,就会造成高压设备的损坏。再有就是一些电缆在质量上存在不足,运行时间太长导致部件老化,也很容易造成电路的故障。为了规避风险,让电力线路更好的为我们服务,一方面需要我们的工作人员不断地加强维护和检修,了解相关知识,提高自身的技术水平,更重要的一方面就是让继电保护装置在电力线路发生故障时恰当地发挥作用。
3继电保护装置
3.1继电保护装置的概念
继电保护装置是指当电力系统中的电力元件(如发电机、变压器、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,实现这种自动化措施的成套设备,一般通称为继电保护装置。
3.2继电保护装置的使用原理与配置
继电保护主要是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
3.2.1电流保护
电流保护主要分为两种情况,分别是:过电流保护、电流速断保护。过电流保护是指按照躲过被保护设备或线路中可能出现的最大负荷电流来整定的。如大电机启动电流(短时)和穿越性短路电流之类的非故障性电流,以确保设备和线路的正常运行。为使上、下级过电流保护能获得选择性,在时限上设有一个相应的级差。电流速断保护———是按照被保护设备或线路末端可能出现的最大短路电流或变压器二次侧发生三相短路电流而整定的。速断保护动作,理论上电流速断保护没有时限。即以零秒及以下时限动作来切断断路器的。定时限过电流保护的动作电流为:IopⅢ=IreⅢKre=Kre1KssKreIL.max式中:Kre———电流继电器的返回系数,一般取0.85。过电流保护的灵敏度用系统最小运行方式下线路末端的两相短路电流IK.min(2)进行校验。
3.2.2电压保护
(1)过电压保护:防止电压升高可能导致电气设备损坏而装设的。(雷击、高电压侵入、事故过电压、操作过电压等)10kV开闭所端头、变压器高压侧装设避雷器主要用来保护开关设备、变压器;变压器低压侧装设避雷器是用来防止雷电波由低压侧侵入而击穿变压器绝缘而设的。(2)欠电压保护:防止电压突然降低致使电气设备的正常运行受损而设置的。
3.3继电保护装置的原则
为了让继电保护装置更好地发挥作用,要满足可靠性、选择性、灵敏性和速动性的要求,在使用时一定注意以下配置原则:
3.3.1要根据保护对象的故障特征来配置
用于继电保护状态判别的故障量,随被保护对象而异,也随电力系统周围条件而异。通过电力元件的电流和所在母线的电压以及这些量演绎出来的其它量,如功率、序相量等等,从而构成电流保护、电压保护以及方向保护等。
3.3.2根据保护对象的电压等级和重要性配置
不同电压等级的电网保护的配置原则不同,尤其是在高压电网中往往强调主保护,所谓主保护就是在设备发生故障时候可以无延时跳闸,此外还要考虑断路器失灵保护。
3.3.3在满足安全性的要求下,尽量简化二次回路
继电保护装置和二次回路是一个完整的结构,但是二次回路如果过于复杂就有可能导致继电保护装置因为不能正确地判明故障的特点而产生误动作,因此,需要简化二次回路。综上所述:继电保护装置在电力系统中的主要作用是:在电力系统范围内,像电力安全卫士一样,按设定的保护区实时地检测各种故障和不正常运行状态,及时准确地采取故障隔离等措施,力求最大限度地保证向用户安全连续供电,避免产生更大、更严重的后果。
4结束语
关键词继电保护;问题;改进
中图分类号TM7文献标识码A文章编号1674-6708(2010)23-0028-02
1配电系统继电保护的概况
1.1配电系统的继电保护装置的组成
电源进线:定时限过流保护,定时限速切保护,过负荷报警及差动保护,轻、重瓦斯及温度保护。馈出线路:过流保护,电流速断保护,小电流接地报警。
1.2配电系统的继电保护装置的配置原则
继电保护的配置,它应当满足两点最基本的要求:一是任何电力设备和线路不得在任何时候处于无继电保护的状态下运行;二是任何电力设备和线路在运行中必须在任何时候由两套完全独立的继电保护装置分别控制两全独立的断路器实现保护。具体来来,要符合以下几点原则:
1)配电站进线一般不设继电保护;
2)变电站及开关站出线保护由过电流保护、零序电流保护、前加速一次重合闸保护(若线路有架空线)构成;
3)配电站及开关站母线分段,配置备用电源自切及自切后加速保护装置;
4)配电变压器选用熔断器或由继电器构成的过电流保护及零序电流保护。
2配电系统继电保护存在的问题
2.1电流互感器饱和
随着供电系统规模的不断扩大,很多低压配电系统短路电流会随着变大,当变、配电所出口处发生短路时,短路电流往往很大,甚至可以达到电流互感器一次侧额定电流的几百倍。在稳态短路情况下,一次短路电流倍数越大,电流互感器变比的误差也越大,使灵敏度低的电流速断保护就可能拒绝动作。在线路短路时,由于电流互感器饱和,感应到二次侧的电流会很小或接近于零,造成定时限过流保护装置拒动。若是在变电所出线故障则要靠母联断路器或主变压器后备保护来切除,延长了故障时间,使故障范围扩大;而若是在配电所的出线过流保护拒动造成配电所进线保护动作,则将使整个配电所全停。
2.2二次设备及二次回路老化
现在我国很多配电系统的继电器是20世纪70年代~80年代的老式继电器,节点氧化尘太多,压力不够,也会造成保护误动,出口不可靠。我们知道,二次回路分直流和交流两部分,如果交流回路实验端子老化,锈蚀,接触电阻过大,严重时会引起开路,引起保护误动或拒动。直流部分在系统失电和系统严重低电压时可靠性难以保证,事故情况下更难以保证可靠动作,会导致越级跳闸,扩大事故范围。
2.3环网供电无保护
目前我国环状配电网基本采用负荷开关为主,目前不设断路器也没有保护。若装设断路器,由于运行方式变化,负荷转移等因素,继电保护选择性无法协调。目前环网运行方式是开口运行,故障时,故障环网全部停电,绝大部分网络是用人工操作对网络重构来恢复供电。对环网中的供电用户,小容量的还可设置熔丝,限止故障的影响范围;用户变压器容量较大的,无法配置有选择性的熔丝保护,甚至直接用铜棒连接,用户故障,环网全停,扩大了故障影响范围。
2.4保护校验装置存在漏洞
现阶段我国很多配电系统保护校验装置存在漏洞。首先是仪器仪表存在问题。仪器仪表是保证保护装置校验质量,提高工作效率的必备基础,但长期以来由于投入的不足,保护工作缺乏高性能的仪器,目前仍以“地摊”式接线为主,虽然“地摊”式接线是保护人员的基本功,但是如果出现错误,将严重影响了保护校验质量和工作效率;其次是现场资料不全。继电保护的图纸资料不齐备一直是困扰继电保护人员的一个大问题,在一些变电站,图纸破损、丢失或不全,甚至新建站就没有竣工图;另一些变电站图纸刚刚补齐,又开始了新的技改项目,改造后又未及时将图纸补齐;因此,各变电站图实不符现象始终存在,难以解决,留下了事故隐患。
3配电系统继电保护的改进措施
3.1避免电流互感器饱和
避免电流互感器饱和主要从3个方面人手:首先是电流互感器的变比不能选得太小,要考虑线路短路时电流互感器饱和问题,比如一般10kV线路保护的电流互感器变比最好大于60/1;其次要尽量减少电流互感器二次负载阻抗,尽量避免保护和计量共用电流互感器,缩短电流互感器二次侧电缆长度及加大二次侧电缆截面;第三是遵守速断保护的原则。高压电动机按起动电流乘以1.2~1.3倍可靠系数确定,如超过其数值就可确定故障电流。时限整定0s,单台变压器按所供电最大1台电动机的起动电流加上其余电动机及照明等负荷的额定电流进行整定,如整定值计算小于变压器额定电流2倍,按2倍的电流整定。超过2倍的电流整定值,按计算数据乘以可靠系数确定,采区变电所内进线柜则遵照最大整定值数据加上其余变压器的额定负荷,按等级划分,确定延时时间,仍有选择性,但短路情况下速断保护无选择性。
3.2完善环网结构的配套建设
目前,环网结构是电缆网络采用的主要形式,目前还没有性能颇为理想的继电保护装置,为快速隔离故障、恢复供电,可以考虑结合配电自动化系统的建设,继电保护与自动化系统相互配合使用。
3.3实行状态检修
继电保护发展至今,从保护原理的设计,到生产厂家制造工艺,到售后服务,各方面都已比较完善。微机保护装置的性能已非常稳定,近几年在我区范围内,由于保护装置性能不稳定引起的误动基本上没有出现过,所发生的保护误动作基本上是保护装置外部原因引起的。因此,我们建议对继电保护设备实行状态检修,也就是说,只要保护装置不告警,就不用进行检修。当然,这要有一个逐步完善的过程,需要大量的配套工程,但这是一种发展趋势。
3.4增加投入,更新设备
企业管理者应该认清供电与企业效益的关系;继电保护与电网安全稳定运行的关系。要加大对继电保护的投人,尽快更新保护装置,淘汰落后设备,增加保护装置动作的可靠性。保证保护校验正常进行保护校验是保护装置运行中十分重要的环节,校验的准确与否直接影响到保护装置的运行效果。因此,应及时更新保护校验设备,完善供电网络建设,在不影响正常安全生产的情况下,确保各回路均有足够保护整定时间,使保护装置校验做到应校必校,不漏项,不简化。
4结论
随着我国经济的发展,对电力的需求越来越大,由于配电系统供配电一体,设备类型复杂,运行方式众多,给继电保护带来一定难度。同时电力系统220kV及500kV线路增加,配电系统的整体网络结构和运行方式变得日益复杂,这就对系统中的继电保护装置提出了更高的要求。同时随着系统的不断发展,肯定会有各种新的问题出现,希望广大现场工作的运行维护技术人员能结合运行经验,提出对应的措施,共同把工作做好。
参考文献
[1]吴晓梅,邹森元主编,国家电力调度通信中心编.电力系统继电保护典型故障分析[M].中国电力出版社,2001.