首页 > 范文大全 > 计划安排

逆向思维和方法训练(6篇)

发布人:收集 发布时间:2024-01-26

逆向思维和方法训练篇1

传统的教学模式和现行数学教材往往注重正向思维而淡化了逆向思维能力的培养。为全面推进素质教育,如何培养学生的逆向思维能力呢?在教学中我认为有以下几点:

一、在概念教学中注意培养反方向的思考与训练

数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:讲述:“同类二次根式”时明确“化简后被开方数相同的几个二次根式是同类二次根式”。反过来,若两个根式是同类二次根式,则必须在化简后被开方数相同

二、重视公式逆用的教学

公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维的能力的体现。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、加强逆定理的教学

1.每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。

在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。逆命题是寻找新定理的重要途径。在平面几何中,许多的性质与判定都有逆定理。如:平行线的性质与判定,两条平行的直线一定没有交点,但是没有交点的两条直线一定平行吗?(否,因为在空间中的两条不相交的直线不一定平行!像这样的反问,学生可能一时答不出来,但只要教师略加点拔,学生就可通过自己的思考获得正确答案。通过反向逆推,引导学生利用逆向思维去发现问题、提出问题,进一步扩大和完善学生的认知结构,深化和升华所学的课本知识。)线段的垂直平分线的性质与判定,平行四边形的性质与判定等,注意它的条件与结论的关系。

四、多用“逆向变式”训练,强化学生的逆向思维

“逆向变式”即在一定的条件下,将已知和求证进行转化,

变成一种与原题目似曾相似的新题型。例如:已知,如图,直

线AB经过0上的点C,且OA=OB,CA=CB,求证:直线AB是

O的切线。可改变为:已知如图,直线AB切O于C,且

OA=OB,求证:AC=BC。或直线AB切O于C,且AC=BC,求证:AC=BC。

再如:不解方程,请判断方程的根的情况。

可变式为:已知关于的方程,当K取何值时?方程有两个不相等的实数根。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、强调某些基本教学方法,促进逆向思维

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。

通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、逆向思维训练

1.设计互逆式问题,培养学生逆向思维的意识。

在课堂教学中,除了正面讲授外,还要有意识地挖掘小学数学教材中蕴含着丰富的互逆因素,精心设计互逆式问题,打破学生思维中的定热,逐步增加逆境向思维的意识。如在教学“小数点位置移动引起小数大小变化”时,当学生总结出第一个结论:“小数点向右移动一位、两位、三位……原数就扩大10倍、100倍、1000倍……”后,教师可提出“根据这个结论,反过来想一想可得出什么结论呢?”(生小数点向左移动一位、两位、三位……原数就缩小10倍、100倍、1000倍……)以上提问旨在打破学生思维的定势,使学生的思维一直处于顺向和逆向的积极活动之中。这样,不仅使学生对此知识辩析得更清楚,而且还逐步培养了学生逆向思维的意识。

2.引导学生学会逆向思考,促进逆向思维习惯的形成。

为进一步打破学生禁锢于正向思维的定势,培养双向思维的良好习惯,教师在教学中应逐步启发引导,适时点拨,提高学生互逆思维的转换能力。在教学中,充分利用课本中的教材,进行逆向思维训练。在学生完成作业后,要求必须还要回过头来验算其解法是否正确,如学生解出一道应用题后,则要求学生以求出的问题为已知条件,把原题的一个已知条件当作问题验算此题。

(1)分解转化思想:一个多项式分解成几个整式的积的形式是一种恒等变形,通过这种变形,使一个高次多项式转化为几个简单多项式(或单项式与多项式)的积的形式。在将来的工作和生活中若遇到很辣手的问题,我们也可以把这一问题分解成几个能简单处理的问题各个击破,最终使问题得到解决。

(2)换元思想:“换元”是重要的数学思想,换元可以使一些复杂的多项式转化为我们所熟悉的知识,使问题迎刃而解

3.解题方法上的逆向思维训练,培养学生用逆向思维解题的能力

著名数学教育家波利亚指出:掌握数学就意味着善于解题。因此注意指导、训练学生解题的思考方法是培养学生思维能力不可替代的一个重要方面。这种方法上的逆向训练有分析法、反证法、逆证法等。

分析法就是从命题的结论出发,逐步追溯充分条件,直到推导出已知条件的一种逆向思维方式。基本思想简言之:由未知看需靠拢已知。“执果索因”是分析法的本质特征。数学中几乎所有证明题都可以用分析法进行推理,与综合法比较分析法更能训练学生的思维,它可以帮助我们迅速找到证题思路。

例如:某池塘的睡莲每天长大一倍,28天就把整个池塘遮住,问睡莲遮住半个池塘,需要多少时间?

逆向思维和方法训练篇2

一、什么是逆向思维

逆向思维是人们重要的一种思维方式。逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。当大家都朝着一个固定的思维方向思考问题时,而你却独自朝相反的方向思索,这样的思维方式就叫逆向思维。

二、逆向思维的培养

教学实践证明,重视对学生创造性思维和逆向思维的训练,可以提高学生解题的灵活性,提高学生分析问题、解决问题的能力,帮助学生克服局限思维和单向思维所导致的解题方法的呆板,有利于培养学生思维的敏捷性和科学性。

(一)在概念定义教学中培养学生的逆向思维

数学中有许多概念定义是互逆的,定义是对一个数学名词的解释,它提示某一概念的本质属性,一般可以“双向互推”。因此在几何证明中,定义既可以作为判定又可以作为性质来用。对于这些互逆的教学,可采取先正向,后逆向,再正逆联用的办法,这样不仅可使学生对概念辨析很清楚,理解得更透彻,而且能养成双向考虑问题的良好习惯,培养学生逆向思维的意识。

如在教完勾股定理及其逆定理后,在原定理想到逆定理,同时想象推出以下新结论:已知ABC中a,b,c分别为∠A,∠B,∠C的对边,当∠C>90°,则a2+b2

(二)注意公式的逆向运用、训练逆向思维基础

学生对公式的逆向应用不习惯,思维常定势在顺向应用公式上,所以教学中应强调公式逆用。

例:利用公式:sin2A+cos2A=1(0°

解:■=■=■

=|sina-cosa|

这里利用1=sin2a+cos2a。

当然,对于有些公式在进行可逆性教学时,应首先注意它们“顺向”与“逆向”在形式上的差别,最后还应该说明在“顺向”与“逆向”在效果上的差异,目的不同。对公式的“顺向”与“逆向”加以研究,才能够使学生深刻理解其实质,并灵活运用。

(三)定理教学中的逆向思维训练

对于定理而言,众所周知,不是所有定理的逆命题都是正确的。但是,在教学中重视引导学生探讨定理的逆命题是否正确,不失是指导学生研究问题的一个有效方法,它对于激发学生的学习兴趣和指导学生正确运用逆定理解题,更具有重要意义。

如在学过定理:“直角三角形斜边的中线等于斜边的一半”以后,教师可引导学生证明它的逆命题的正确性,并用它来判断一个三角形是否为直角三角形。又如通过对定理:“等腰三角形的顶角平分线是底边上的高和中线”的逆命题正确性的研究,可利用它的逆命题成立这一条件,来判断一个三角形是否等腰等等。

(四)运用运算和交换的可逆性进行逆向思维培养

数学中的各种变换和运算是正、逆交替的,如映射与逆映射、函数与逆函数、指数函数与对数函数等,它们都可以相互转化。

(五)充分运用反证法加强逆向思维训练

反正法就是假设结论的反面成立,由此推导出与假设、定义、公理相矛盾的结论,从而假设,肯定结论的证明方法。这种应用逆向思维的方法,可使很多问题处理起来相当简捷。反证法也是一种逆向思维,运用它能够训练学生从未知到已知的逆向思维能力。

反证法不仅能证明直接证法感到困难或用直接证法证明不了的命题,而且也是培养学生逆向思维能力的又一个重要的途径。

(六)逆向排除法培养逆向思维能力

有些数学问题,正面复杂,反面简单,只要逆向分析,进行排除,就能使问题得到简捷的解答,这个也是解某些选择题的有效途径。

例:掷2枚色子,求2枚色子向上的点数乘积为偶数的概率。

逆向思维和方法训练篇3

关键词:逆向思维;数学基础知识

一、逆向思维在数学中的应用

逆向思维反映的是思维过程的间断性和突变性,意即强调使学生突破思维定势和固有的思考框架,产生新的思考方法,找到新的解题途径.这是创立新科学理论的重要思维方法.数学教学中最基本的“设定未知数‘x’”即是逆向思维的一种最为普遍的应用.即,将原本未知待解的数“x”设定为已知数代入到公式中,通过“x”在公式中的关系反向推导出结果.逆向思维在数学中的实际应用早在19世纪就催生出了非欧几何,包括后来在20世纪60年代建立发展起来的模糊数学,均是逆向思维在数学领域成功运用的典型案例.

二、实际教学中逆向思维的培养和训练

对于逆向思维在初中教学中的培养和应用,应主要从两个方面入手.

1加强基础知识的逆向教学.初中阶段,数学仍然是一门基础学科.在教学过程中强调对基础知识牢固掌握的同时,顺势导人逆向思维,不仅更加巩固了学生对基础知识的熟练掌握程度,也锻炼了学生的思维,拓展了思考模式.在基础知识中,应在对概念的理解和运用上加强逆向教学.在数学中存在诸多“互为”关系的概念:比如,“互为相反数”、“互为倒数”等等,通过这些简单的概念,教师可以引导学生从正反两方面去思考,培养其逆向思维的能力进而建立起双向的思维模式.比如,对于原命题、逆命题这一概念,学生往往只重点记住了逆命题是原命题的逆命题,却忽视了原命题也是逆命题的逆命题.在教学过程中,教师若能适时地引导学生从命题的反面进行思考,则会在早期的基础阶段就打下良好的逆向思维根基.

2注意解题方法上的逆向思维训练.(1)分析法解题。分析法就是从命题的结论出发,顺藤摸瓜追溯充分条件,直到推导出已知条件的方法,可以充分培养学生的逆向思维能力.“执果溯因”是分析法的本质特征,关键是整个解题过程必须是可逆的.(2)反证法.反证法是一种间接证法,是从特征结论的反面出发,推出矛盾,从而否定要证明结论的反面,肯定特征结论(即双重否定等于肯定),是许多数学问题在直接证法相当困难时常用到的方法之一.加强反证法的训练,有利于学生思维广度的拓宽和深度的加深,对逆向思维的培养有着非常重要的作用.(3)举反例.在数学命题中,给出一个命题要判断它的错误,只要给出一个满足命题的条件但结论不成立的例子,即可否定这个命题.这就是通常意义说的反例.加强举反例的训练,可以有机地做到训练和培养学生的逆向思维能力.

三、逆向思维在数学解题中的实际应用

1.立体几何命题.立体几何中的概念、定理除了直接应用外,可以根据题目的特点和要求反过来应用.例如,求证:分别在两个平面内的两条不平行直接是异面直线.根据题目和条件,由已知得这两条直接不平行,接下来只要证明这两条直接不相交,便意味着它们为异面直线.由此可见,利用反证法解此题轻而易举.2.概率命题.例如,全班40名学生,求至少有2人同月同日生的概率.在这则著名的“生日怪论”命题中,引导学生用其对立的事件的概率来求解便显得易如反掌.先求出40名学生都不同月同日生的概率,然后根据对立事件的概率和为1,得到至少有两人同月同日生的概率数值.利用对立事件进行逆向思维,能使复杂的概率问题得到简化.3.不等式命题.例如,a,b,c,d均为正数,求证:(a/b+c/d)(b/a+d/c)≥4.分析:欲证该命题即为证:1+ad/bc+bc/da≥4,就是要证:ad/bc+bc/ad≥2,即证:(ad)2+(bc)2≥2abcd,即:(ad-bc)2≥0.由实数性质可知成立,从而找到证题起点.在数学中,互逆定理、互逆公式、互逆运算等等比比皆是,如能熟练掌握并适时运用逆向思维,则会使一时阻塞的思路豁然开朗,也由此可见培养学生的逆向思维是如何重要.

逆向思维和方法训练篇4

思维的求异性、积极性、广阔性、联想性都是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。

一、转换角度思考,训练思维的求异性。

发散思维活动的展开,重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。

例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。

在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。

二、激发求知欲,训练思维的积极性。

思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基矗在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在一年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。

我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

三、一题多解、变式引伸,训练思维的广阔性。

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

四、转化思想,训练思维的联想性。

逆向思维和方法训练篇5

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以用A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的而有时也会从右到左的运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式的逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用。这组公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用。直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面人手解决不了就考虑从问题的反面人手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题。正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

逆向思维和方法训练篇6

关键词:高中数学逆向思维培养

俄罗斯著名教育家加里宁说:“数学是思维的体操。”正如体操锻炼可以改变人的体质一样,通过数学思维的恰当训练,逐步掌握数学思维方法与规律,既可以改变人的智力和能力,也可以培养学生的创新精神和创新意识。学生的思维能力一般是指正向思维,即由因到果,分析顺理成章,而逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。因此,我们在课堂教学中必须加强学生逆向思维能力的培养。传统的教学模式往往注重正向思维而淡化了逆向思维能力的培养。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。为全面推进素质教育,加强对学生的各方面能力的培养,打破传统的教育理念,在此我从以下几方面谈谈学生的逆向思维的培养。

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合A是集合B的子集时,A交B就等于A,如果反过来,已知A交B等于A时,就可以知道A是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的,而有时也会从右到左运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式中,逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用,这些公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理

的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用,直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等。注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面入手解决不了就考虑从问题的反面入手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题……总之,正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、通过逆向思维的培养进一步加强灵活的教学方法

高中数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、加强举反例训练,培养逆向思维