关键词:无人机遥感系统;架空;输电线路;勘测;应用
引言:我国电力输电线路建设路线长,跨越的范围广,其勘测工作具有很高的难度性。对于传统的架空输电线路勘测工作而言都是派遣相关的技术人员进行现场勘测,不仅花费了大量的资源,同时勘测工作的开展还不能取得非常可观的成效。无人机遥感系统在架空输电线路勘测中的应用,不仅扩大的勘测的范围,提升的勘测工作的成效,同时还促进了勘测工作现代化的发展,对于保障我国架空输电线路的安全性和稳定性有着不可忽视的重要意义。下面就对相关内容进行详细的阐述。
一、无人机遥感系统组成及其应用
无人机遥感系统主要是以无人机为重要媒介,在无人机上装置高分辨率的相机,从而获得丰富的影像数据,通过无人机飞行控制以及地面远程控制系统,使得无人机自动的进行数据信息的获取,具有信息采集、信息储存和压缩等众多功能,该系统自动化、智能化水平较高,是目前可靠性非常良好的低空飞行遥感系统。无人机遥感系统的构成主要包括以下内容:无人机低空飞行导航仪、无人机拍摄器、地面监控中心、数据信息接收发送系统,以及相关的附加配置等。无人机遥感系统住主要的功能就是可以在低空飞行的过程中,对确定的范围区域实时的、快速的采集影像信息,为其它工作的开展提供重要的参考依据。
无人机系统是一种现代化、信息化的监测手段,因为操作便捷,受到的限制少,成本花费较少等优越特点,在众多监测领域都有着较为广泛的应用,对于促进我国国民经济的发展有着不可忽视的重要作用,特别是在我国的森林防护、矿产勘探等众多领域,在我国的电力建设领域中也是如此。为相关人员提供了一种可以快速对信息进行采集、储存、处理、传送的一体化遥感系统,能够对大比例尺寸的地图进行真实性、全面性的呈现,提供正面拍摄得到的影像数据。无人机遥感系统以及渐渐成为遥感勘测工作开展的重要方式,也代表着勘测技术在现阶段的发展成就。
二、工作流程
我国架空输电线路建设路线长,跨越的范围广,很多的线路处于环境非常复杂的区域,使得架空输电线路的勘测工作存在很高的难度,勘测工作的开展必须要制定相应的工作规划。对于无人机遥感在架空输电线路勘测工作开展流程可以分为以下内容:首先勘测工作人员需要对无人机上的数码摄像机进行检验,查验摄像机是否处于健康工作状态中。对于无人机低空飞行航线进行规划,使得勘测工作的开展系统性,避免勘测区域存在死角。还需要对无人机遥感系统获取的数据进行处理,其中包括采集影像的拼接等众多内容,对于勘测结果进行检验,为后续工作的开展提供重要的依据。
三、架空输电线路勘测关键技术
(一)相机检校
无人机遥感系统中配置的都是非测量型的数码拍摄相机,因为该种相机镜头畸变的情况非常的严重,在架空输电线路勘测工作开展前需要对镜头进行校对,这样才能使得无人机在低空飞行的过程中获得高质量的摄像数据。相关的勘测工作人员可以在室外建立相机校对场所,对数码相机的参数进行设置。对于无人机上数码相机的校对需要满足以下要求:主点坐标位置需要准确,主焦距的系数需要控制在合理范围内。要使得无人机勘测设备需要在校对场地进行低空飞行,多角度的进行低空拍摄,通过对校对场地的实际拍摄明,了解无人机数码相机较对的实际情况,最大限度的提升勘测拍摄成效。数码拍摄相机最终的校对结果,主点坐标的误差值不能超过10μm,主焦距的误差值需要控制在5μm以下。
(二)一般像控点布设
无人机遥感系统在架空输电线路勘测工作中的应用,能够有效的提升架空输电线路勘测的准确性,对保障输电线路运行的稳定性有着不可忽视的重要意义。在勘测工作开展前,要对勘测的范围进行合理的分区,依据勘测区域的实际情况进行比例地图的绘制,以实际情况为重要依据确定像控点之间的间隔。如果架空输电线路勘测区域起伏程度较大,这时勘测人员需要增加像控点,并且在勘测的最高区域,以及勘测范围的最低区域都要进行像控点的布置。在保证勘测质量不会受到任何不良影响的情况在,在地势较为平坦的架空输电线路勘测区域应当适当的减少像控点。勘测工作人员必须要依据像控点布置原则进行合理的规划,对于没有较为明显特征的架空输电线路勘测区域,要应用人工的形式设置相应的标靶,保证架空输电线路勘测工作的顺利开展。
(三)影像快速拼接与纠正
无人机航摄一个架次获取的影像上千张,达10多个GB的量级,除了性能出众的摄影测量工作站硬件支持外,更需要针对其影像特点、相机参数、飞行姿态数据以及相关几何模型,通过空中三角测量加密软件,对多幅无人机影像进行图像的几何纠正配准和镶嵌匀色,实现影像的快速拼接,最后生成正射遥感影像产品。目前,国内外比较通用的支持此类后期数据处理的商业软件也很多,例如:PixelGird、VirtuosoAAT-PATB、ImageStationSSK、MAP-AT、DPGrid、PixelFactory、Inpho全数字摄影测量等软件,可根据实际作业需求,并结合各软件的优缺点和性价比进行合理的选择。
结语:无人机遥感系统是一种新型的勘测技术,是勘测技术现代化、信息化发展的重要体现。该遥感系统不会受到时间和空间的限制,同时操作非常的便捷,运行的成本很低,能够在极短的时间内获得大量的影像信息数据。无人机遥感系统在架空输电线路勘测工作中的应用,能够改变以往传统架空输电线路勘测存在的不足,提升了勘测工作成效,保证了架空输电线路运行的安全性和可靠性,对于促进我国电力事业的发展有着不可忽视的重要作用。
参考文献
关键词:航空摄影;测量;遥感;技术应用
Abstract:withthenationaldefenseconstruction,nationaleconomicandsocialdevelopmentofgeographicspaceinformationapplicationsincreaseddemandaerophotogrammetrydevelopmentwithnewopportunitiesatthesametimeaerophotogrammetryequipmentdevelopmentisalsofacedwithseverechallenges.Aviationphotogrammetrydevelopment,remotesensingtechnologytoprovideaspaceforthelocationofthetheoreticalbasisandmethod,andtherapiddevelopmentofremotesensingtechnology,isalsoinphotogrammetryhashadahugeimpact.Thisarticlefromtheuserrequirementofargumentputforwardtheaerialphotogrammetryandremotesensingtechnologyequipmentandtechnologysystem,discussestheaerialphotogrammetryandremotesensingtechnologyapplication.
Keywords:aerialphotography;Thesurvey;Remotesensing;Technologyapplication
中图分类号:TU74文献标识码:A文章编号:
一.概述
信息时代,信息是至关重要的资源,而信息的获取又是其中非常重要的一步。摄影测量与遥感作为对地观测获取地物信息的重要手段之一,正发挥着越来越大的作用。长期以来,摄影测量学被视为一门几何科学。随着遥感技术的出现和不断发展,这门学科正在从几何科学向信息科学发展。摄影测量与遥感技术利用各种不同类型的非接触传感器,获取模拟的或数字的影像,然后通过解析和数字化方式提取所需要的信息,在空间信息系统中以数字方式加以存储、管理、分析和表达,再通过可视化和符号化技术形成所需要的产品
二.航空摄影测量与遥感装备体系结构
(1)航空摄影测量
依据航空摄影测量任务、能力需求和地理空间信息流程,航空摄影测量应由卫星对地观测、对地观测数据综合接收、地理空间信息综合处理、管理和应用服务五大功能领域组成,与之相应的航空摄影测量装备体系结构如图1所示:
图1航空摄影测量装备体系结构
①卫星对地观测系统,以卫星为平台,搭载不同精度(如0.6m、0.3m、0.1m或更高地面像元分辨率)、不同工作波段(可见光、微波)、不同测量原理(激光、重力、磁力)的测绘传感器,形成多平台组网、多传感器互补、满足多地理要素探测、多比例尺地形图测绘需要的卫星对地观测体系。
②对地观测数据综合接收系统,由中心站和若干分站组成对地观测数据地面综合接收站网,接收站之间通过网络实现数据通信与交换;每一个接收站分别由业务运控管理、对地观测数据综合接收、影像产品预处理和传感器定标等功能系统组成。
③地理空间信息综合处理系统,由大地测量数据(包括平面、高程、重力、磁力数据)处理、摄影测量与遥感影像数据处理、数字地图制图与印刷等功能系统等组成,通常是多台套、多功能、异构并行处理的信息系统。
④地理空间信息应用服务系统,由地理空间信息服务、地理环境可视化、地理环境分析与辅助决策等功能系统组成,依据国防建设、国民经济建设和社会发展对地理空间信息的需求,上述功能系统可组合使用,直接面向用户提供多功能地理空间信息应用服务。
⑤地理空间信息基础设施,是以网络(格)为基础、以数据为中心、分布式存储、面向对象提供地理空间信息服务的信息基础设施,一般由地理空间数据管理、地理空间信息查询服务、专题测绘产品定制分发和网络管理、信息安全管理、质量控制等功能系统组成。
(2)遥感装备体系结构
航空遥感系统航空遥感系统主要由传感器、装载传感器的航空遥感平台及记录航空影像信息的感光胶片组成。
①传感器
传感器是遥感技术系统的重要组成部分,它通过测量和记录目标物的电磁辐射强度和特性,直接获得目标的信息。传感器一般由收集器、探测器、信号处理器和输出设备所组成。用于不同目的的传感器,其工作方式、工作波段及输出方式各异。有些传感器是被动地探测目标物所反射或发射的电磁波辐射,成为一种被动式传感器,另一种是主动式传感器。它本身发射电磁波,然后接收回波。传感器按记录方式,可分为非成像传感器和成像传感器两类。
②感光胶片
感光胶片作为摄影机的探测元件,用以记录地物反射电磁波的性质和强度,不同感光胶片的感受能力不同。长期以来,黑白全色片一直是航空摄影机的标准型胶片。全色胶片的光谱灵敏度占光谱中的紫外(0.3—0.4微米)和可见光(0.4—0.7微米)光谱部分。还有一种用以加工黑白航空相片的红外感光胶片,这种胶片不仅对红外和可见光感光而且也对反射红外(0.7一0.9微米)感光。还有一种彩色红外胶片,它的出现得益于二战期间侦察表面涂漆伪装成植物的各种目标的需求。
③航空遥感平台
航空遥感平台用以安放航空传感器、对地物目标进行遥感探测的工作平台。它的飞行高度较低,地面分辨率较高,而且有机动灵活、使用方便、资料回收较易等优越性。用作航空遥感平台的气球主要有三种,一种是自由气球,它可达到近50千米的高空,既可用来测试传感器的性能,也可用以收集地面信息。二是气球,它可上升到11千米高空,持续6个小时。气球常常充以氢气或氦气,另外还有充灌热空气的热气球。三是系留气球,最高可达5千米的高度,它是较为接近地面的固定的空中平台,用于近地面和低空的遥感观测。飞机是航空遥感中广泛使用的一种运载工具,它可以携带多种传感器,主要有航空摄影机、扫描仪和机载侧视雷达等。用作传感器工作平台的主要有轻型低空飞机、重型飞机、直升飞机和无线电遥控的无人驾驶飞机。
三.航空摄影测量与遥感技术应用
关键词:微型遥控无人机、结构特点、飞行控制、技术方案、测量精度
一、微型遥控无人机的特点
无人驾驶飞行器按照系统组成和飞行特点,分为固定翼型无人机、无人驾驶直升机和无人驾驶飞艇等种类。近几年来,微型遥控无人机变成了无人驾驶飞行器家族新的成员,它成为航天遥感、航空遥感和地面遥感平台的重要补充,它起着传统摄影平台不可替代的作用,在摄影测量中显现了它的优越性,它的特点有:
1.安全性高。遥控航空摄影的的作业现场许多是载人飞行器无法到达的空域或危险地区。如高原、沙漠、沼泽、火山口等。即使无人机出现故障,也不会出现人员伤亡。
2.成本低廉。用户无须一次性大量投资,无需租用场地,不需转场,现场起降,运营成本、维护成本远远低于载人机系统。
3.不需任何审批手续。它体积小,机动灵活,可在云层下做超低空、超视距飞行,降低了对天气条件的要求。
4.效率高。摄影资料现场回放,不符合要求的可即时重拍,飞行时间基本是有效拍摄时长;工作现场集中,便于统筹安排。
二、影响微型无人机低空摄影测量精度的主要因素
虽然微型遥控无人机因其机动、灵活、低成本、不受空管限制等特点,被广泛应用于大比例尺地图更新、新农村建设、土地整理、城镇规划建设等方面,但限于自身制造工艺和软件设计水平,在测绘1:500和1:1000大比例尺地形图方面,难以满足精度要求,结合使用经验,从其结构特点、飞行控制、自然条件及后续处理软件等方面阐述影响微型遥控无人机低空摄影测量精度的主要因素。
1.微型无人机本身结构对影像质量的影响
由于微型遥控无人机摄影时使用的是小型数码相机,它与传统的专业量测相机相比,其性能和结构有较大的差异。
⑴、相机物镜存在较大色差和畸变差
相机物镜是一种光学玻璃,它对不同波长的光线折射率是不同的,因而在焦平面上形成各自的焦点,产生横向色差和纵向色差,色差使得像片上的影像模糊不清晰;相机物镜是采用非球面研磨技术的透镜组,但在加工、安装和调试时难免还有一定的残差,畸变差使得被摄景物与影像不能保持精确的相似性,造成了影像的几何变形。
现在的数码相机大多数采用窄画幅或中画幅CCD影像传感器来记录影像数据,由于感光单元的非正方形因子、CCD面阵的非正交性排列和像素单元畸变差的存在,从影像中心到边缘误差逐渐增大,最大可达到50个像素,平面误差约3-4米,无法获取满足精度要求的数据源,只有对影像进行纠正,才能获取可供量测的稳定清晰的影像。
⑵、CCD芯片大小和分辨率
分辨率是指数码相机CCD芯片对被摄物体的解析能力。像素数量是衡量数码相机分辨率的关键因素,在等量面积上,像素越多,单元像素越小,影像的清晰度才越高,细节表现才越好,色彩还原才越逼真。否则,影像质量越低劣。
⑶、数码噪音
每一卷传统胶片对应一个感光度值,而同一台数码相机有多种不同的“相当感光度”值,当采用高感光度拍摄时,传感器信号被放大,干扰电流也随之放大,引起更多的噪音。产生数码相机噪音的原因有本身元器件的性能、线路设计采用的降噪技术、拍摄时使用了较高感光度、曝光不足、长时间曝光等因素,数码噪音引起图像上的杂点增多,使得图像质量降低。
2.大气条件对影像质量的影响
对摄影成像来说,景物亮度的大小只影响像片上的曝光量,重要的是像片上相邻地物影像之间的密度差,如果地物影像之间没有密度差异,也就是没有影像反差,也就无法从影像上辨别地物,而决定影像反差的因素除了景物本身特征外,主要取决于阳光部分和阴影部分照度之间的差异,如果选择天气条件不好时摄影,必然使影像质量变差。
3.飞行控制技术对影像质量的影响
微型无人机体积较小,一般都在三十公斤之内,在摄影时受气流、风力、风向影响较大,无法保持直线平稳飞行,航线倾角、旁向倾角和旋转角都很大,飞行姿态难以控制,飞机在航线前后左右等方向上摆动造成了影像模糊,影像了清晰度。另外,由于遥控无人机采用低空飞行,航高较低,相对地面物体移动速度较快,在曝光过程中,成像面上的地物构像随之产生位移,形成像移,像移的出现同样使影像模糊,影响了成像质量。
4.技术方案对量测精度的影响
⑴、相片重叠度、基高比对量测精度的影响
小型数码相机一般均为矩形阵面的CCD,并非传统的正方形。像片重叠度越大基线越短,基高比越小,正常情况下,其基高比为0.15左右,远小于传统摄影的0.50,在立体模型下,同名地物交会角较小,降低了立体观测效果,直接影响高程量测精度。如果在保证具有三度重叠的前提下,尽量减少相片重叠度或使CCD阵面的长边与摄影航线相一致,可以大大增加基高比,提高高程量测精度。
⑵、像控点目标选取对测量精度的影响
外业像控点测量时,对目标点的选取主要取决于影像纹理的丰富程度,影像纹理粗糙、弧形地物、线状地物交角不好,直接影响了外业点位选取精度,同时内业对像控点的转刺同样有较大的误差,较低了成图精度。如果采取先布设地面目标点后摄影,则能较大提高外业选点精度和内业转刺点精度,有助于提高成图质量。
5.影像后处理软件对测量精度的影响
目前,微型遥控无人机获取的数据源,与传统的航片相比,存在像幅较小、影像数量多、飞行质量不好、影像质量差等情况,所以应针对其数据影像的特点,需开发出影像自动识别、快速拼接软件,实现数据的快速处理与融合,但是,目前各生产厂家的软件功能不甚完善、自动化程度还不是很高,直接影响了工作效率,对提高成图质量不利。
【关键词】地形测绘试验;大比例尺;遥控直升机;应用研究
传统的航空遥感摄影测绘技术的应用依然很普遍,但是随着大比例尺地形测绘需求的提高,该种测绘技术因成本偏高、性价比较差未能应用在小面积地形测绘工程中,业内专家便开始研究可以替代航空遥感摄影技术的低空遥感控制平台,以便满足小面积、大比例尺地形测绘的需要,使用遥感直升机进行测量应运而生。
一、遥感直升机的应用特征
为进一步提高低空遥感测绘技术来充分满足小面积地形测绘工程的需要,相关技术人员将遥控模型直升机当作测绘的媒介,在遥感直升机上安装无线摄像机,对其进行遥控操作,从而获取测绘范围内的地面影响数据资料,也即利用近景摄影的方式,使得大比例尺地形图能够迅速成图,准确获得试验区域中的正射影像图。遥感直升机在地形测绘领域中的应用转变了以往的测绘理念和方式,对提高小面积、大比例尺地形测绘精确度具有积极作用。
无线电遥控模型直升机在主旋翼的带动下,和空气做相对运动,依靠升力将机身提起,并在发动机的牵引下,采用微妙的机械操作,使主桨和尾桨的角度处于不断的变化之中,机身也在随着角度的变化而坐着多种动作,以便达到不同角度测绘的效果。直升机飞行的过程中主要依靠不同方向力的合成和分解作用,当遥感直升机在空中停悬的时候,此时的升力与重力等值,一旦操纵模型直升机运动时先前的升力倾斜,再次分成垂直和水平两个方向的分力,水平方向上的分力则促使直升机一直前进,垂直方向的分力和重力相互抵消使得直升机不会发生下坠的问题,如果先前的升力分为水平与垂直两分力后,倘若垂直分力比重力要小,则直升机会下坠,因此要增加垂直分力的大小,所以在推降舵前行时加一点油门便可以达到预期的效果。
二、遥感直升机在大比例尺地形测绘中的应用实践研究
遥感直升机整体的载重量较小,因此在该试验中使用微型的无线摄像机来获取地面的影像,使用的镜头成像器件是1/37S0NYsuperHADCCD,像素为752×582(44万像素),整体的感光面积为4.8×3.9mm2,水平解析度控制在480线,同时最低照度保持在0.05LUX/0.01LUX,CCD光圈为:1/50~100000(s),摄像镜头的尺寸为16×I7×14mm,使用800m无线微波影像进行信息的传输,包括电池的重量总共为280g,在拍摄的过程中,直升机飞行的高度和地面保持20m上下的距离,以便更加全面地获得测绘数据。试验的过程中,可以将无线摄像头于直升机正下方固定下来,便于接收机随时连接到数字摄像机拍摄和存储的影像效果。为了给后期的处理奠定良好的基础。在拍摄的过程中还尽量确保能够正直摄影(也即直升机保持平飞姿势),同时要最大限度地摄取地面测区域的影像,也可以为后期的处理时提供更多的素材。
遥感直升机在飞行过程中的稳定性欠佳,则拍摄的影像就会存在角度不一致或者比例尺不一致的问题,因此要对影响进行预处理,以便摄影的效果符合预期的规定。预处理主要包括影像的选取和影像的预拼接。选取时应注意比例尺是否保持一直,在拼接的过程中则要合理选择所拍摄的影像与比例尺的符合度是否达到预期的标准。也可以使用PhotoShop图像处理专业软件,提前将获取的地面影像拼接成为相邻完整度较高的影像,比例尺的误差就可以有效控制在10%之内。
采用遥感直升机进行小面积、大比例尺地形测绘作业最为关键的还是外业控制点的设置上,依据相关的实践研究可知,如果根据现有的航空摄影测量户外作业的相关规定来布置此次试验,则会对测绘结果的精确程度产生一定的影响,为此,根据无线电遥控模拟直升机本身的性能和测绘工程的需求,需要在原来规定的基础上,再提高外业控制点的布置密度,在拼接后的几张影像中,一共布置了36个外业控制点,并且所有的控制点都使用Nikon531E全站仪,来科学测定其平面坐标的具置和控制点的高程,并且通过空三加密试验,结果证实这种布置方案可以满足测绘工程对精度的要求。“空三”加密方法为传统航空摄影测量的主要方式之一,传统常规的测绘模式主要是在外业像控制点的基础上实行航片标准点位坐标的再次加密测量,这样做是为给下一道测图工序提供标准点的坐
标成果。但是如今的加密工序和测图工序存在相互影响、相互作用的关系,甚至能够将空中三角测量视为测图工序过程中的前期“预处理”。由于全站仪测量结果为三维立体效果,在区域网中的所有的外业控制点不再明显区分平面点与高程点,促使空中三角测量的效果要比常规的布网方式灵活得多,且操作起来更加方便,并且所提供给测图模块的结果不再仅仅是标准点的坐标,而是整个区域网的模型整体。由于数字摄影测量系统本身即包含了“空三”加密模块,所以加密的效果就可在确保精度不损失的情况下移植到测图等模块下。与传统的加密工序相比,这种方式加密精度更高,尤其是减少了一些传统工序的精度损失,降低了重复模型定向的工作环节,因而可以确保测绘结果的精确性,同时还可以提高测绘的效率,节省作业的时间。
现行的遥感直升机在地形测绘方面优势显著。传统的航空遥感摄影技术随着测绘行业的发展,不足之处日益明显,尤其是不能进行小面积、大比例尺地形的测绘工作,并且航空遥感摄影技术的造价比较高,测绘工程的成本就比较大,因此和遥感直升机相比性价比较差。使用遥感直升机可以替代常规的航空摄影测量,并且操作灵活,成本较低,还可以满足测绘工程量的需求,得到业内技术人员的青睐。
使用遥感直升机进行近景测量不仅可以获得高清的地形图,还可以在被测量区域内获得较为清晰的正射影响图,并且花费的成本远远小于常规的航空摄影测量。大比例尺地形的测绘对测量面积有着一定的要求,一般进行小面积的大比例尺测绘可以取得较为理想的效果,而在大面积地形测绘中不适宜使用遥感直升机测绘。
总结:
综上所述,使用遥感直升机在对大比例尺地形测绘中发挥着重要的作用,不仅可以最大限度提高测绘的精确性和科学性,同时还可以进行全天候的测绘工作,不会受到时间的限制,但是由于模型直升机的应用会受到国家航空相关部门的管控,因此要根据测绘的需要慎重选择使用的区域,避开人口密集的地区,以便达到便捷准确测绘的效果。
参考文献:
[1]刘彬.航空摄影在大比例尺地形测绘中的应用[J].科技传播,2012,08(23)
[2]任宏旭.基于三维激光扫描的大比例尺地形测绘方法研究[J].人民长江,2014,04(14)
[3]赵树春.航空摄影在大比例尺地形测绘中的应用[J].黑龙江科技信息,2013,09(15)
关键词:无人机遥感测绘技术;工程测绘;应用探究
DOI:10.16640/j.cnki.37-1222/t.2018.10.125
0前言
經济的快速发展促使了人们对于工程测绘质量提出了更高的要求,推动着相关技术的改革和创新,无人机遥感测绘在此背景之下应运而生。作为一种新型测试技术,无人机遥感测绘有着其他手段所无法比拟的优势,涉及了多个层面的内容,对于提高测绘工作的精度和效率都有表现出了很明显的优势,研究无人机遥感测绘技术在工程测绘中的应用的相关问题,对于促进无人机遥感测绘技术更快更好地发展有十分重要的现实意义,下面笔者将针对相关问题展开论述:
1无人机遥感测绘技术简介与发展现状
无人机遥感测绘技术又叫无人机航测遥感技术,是一种借助无线电设备控制无人驾驶的飞行设备,进而快速获取信息的一种新技术,集合了无人驾驶飞行器技术、遥感传感器技术、通讯技术、gps差分定位技术等一系列高科技技术,实现了对于国土资源、自然环境等空间遥感信息的智能化、专业化、快速化处理,并能够对相关数据进行处理、建模和分析。整个无人机遥感测绘技术系统包含无人飞行器平台、高分辨率数码传感设备、GPS导航定位系统、数据处理系统等多个部分。
无人机遥感测绘技术应用的时间相对较短,只有几年的时间,但是凭借着其优势,发展速度很快,且应用范围越来越广泛,也带动了无人机产业的快速发展,不仅为工程测绘工作带来了极大的便利,提供了良好的技术支持,还促进了我国经济和科学技术的快速发展。尤其是低空遥感技术的不断发展成熟,与无人机技术进行了完美的结合,实现了无人机的自动导航系统,充分地发挥了优势,得到了十分广泛的应用,并逐渐地走出国门,走向国际市场[1]。
2无人机遥感测绘技术的优劣势分析
无人机遥感测绘技术的优势体现在以下几个方面:
2.1设备操作简单方便,安全可靠
无人机运行通过遥感操作实现,不需要驾驶员亲自驾驶,不仅大大简化了设备结构,而且降低了设备的重量,提高了无人机设备的灵活性,同时工作人员的人身安全得到了充分的保障,提高了可靠性。
2.2影像清晰,处理测量信息效率更高
无人机测绘拍摄的影像有着更高的分辨率,在对复杂测绘数据的分析处理方面十分高效,且与其他技术有很强的兼容性,比如GIS等,进一步提高了效率。
2.3数据信息处理的成本费用更低
无人机系统的整体造价与传统航拍飞机相比要低很多,有关无人机驾驶员的培训工作也相对比较容易,时间更短,且无人机设备通常是由碳纤维复合材料组成,对于设备的后期维护保养工作也比较简单,整体成本更低[2]。
2.4监测范围更大,宏观性更强
通过调整无人机的飞行高度,可以对不同范围的区域进行测绘,飞行高度越高,测绘范围越大,精度相对较低,反之精度较高,也可以采用多架次的无人机配合监测,借助光谱分析来获得监测区域的数据信息。
无人机遥感测绘也存在一定的劣势,比如飞行稳定性、因过分依赖通讯系统而容易被干扰、传感器控制精度问题等,需要在以后的研究中逐一解决。
3无人机遥感测绘技术在工程测绘中的应用
无人机遥感测绘技术在工程测绘中的应用,大致包括以下几个方面:
3.1无人机航拍技术在工程测绘中的应用
工程测绘过程中存在诸多的不确定因素,比如测绘环境复杂、测绘周期长、测绘难度大等等,无人机航拍可以有效弥补传统测绘方式的缺点和不足,大大降低工程测绘的难度,有效地提高测绘效率,得到清晰精确的影像和数据信息,无人机上自带的相机、扫描仪及计算机系统等可以进行全方位多角度的拍摄,并对数据进行储存和加工,尽可能地将外界因素所带来的不利影响降到最低[3]。
3.2无人机低空航拍技术在工程测绘中的应用
无人机低空航拍技术可以针对测绘环境较差的目标进行测绘,能够有效地提高图像采集的清晰度和精确度,提升测绘应急保障服务水平,保证测绘数据的真实性和可靠性,有效促进国土资源遥感监测和国土资源规划等工作的顺利开展。无人机低空航拍的精确度高、可靠性好、反应灵敏迅速,有着较大的应用范围,值得大力推广,需要进一步做好研发工作,健全相应的服务体系。
3.3无人机数据采集处理技术在工程测绘中的应用
无人机数据的采集处理通常情况下是通过手动和自动两种形式来实现,手动方式通过远程控制无人机遥感技术,来对特定的采集目标进行影像和数据的采集,结合实际需求对无人机的采集方向、角度、维度等进行调整,保证数据采集的准确;自动方式则主要借助设备自带的计算机系统来进行采集并加密,提高测绘数据信息的安全性和可靠性[4]。
4结语
关键词:无人机;航空遥感;测量系统
1引言
无人机航摄系统是一种以无人机(UnmannedAerialVehicle,简称UAV)为平台,搭载小型影像传感器,借助卫星导航技术、通讯技术实现低空航摄飞行,快速获取地面影像数据的系统。该系统具有机动性强、成本低、外部环境影响小、分辨率高、作业周期短等优势,逐渐成为工程数据获取的重要手段之一。发展低空遥感产业,不仅能满足一定范围的数据获取的需要,更重要的是能促进完善我国航空遥感体系,改善我国地理空间数据的获取、处理和分析能力,促进高分辨率遥感数据在国家不同领域的应用,减少对国外高分辨率遥感数据的过分依赖。
2无人机摄影测量系统的组成
2.1硬件组成
无人机测绘遥感系统由无人机飞行平台、传感器、飞行控制系统、地面监控系统以及地面运输与保障系统五部分组成。国内比较成熟的飞行平台有“垂直尾”型无人机、“双发”型无人机“倒桅尾”型无人机等,搭载高端单反数码相机,无人机飞行控制系统主要包括自动驾驶仪、GPS导航仪、姿态控制仪、高度计、气压计等。关键技术为GPS导航控制的定点曝光技术和相机旋偏改正技术。地面监控系统主要包括通讯系统、监控软件系统和维护系统。
2.2软件组成
无人机航空摄影及影像处理比传统航测复杂很多,为保证航摄质量需进行精确航摄规划、航摄质量快速检查及影像快速预处理等,完成这些工作需配置相应的软件。
精确航摄任务规划软件主要用于航摄任务规划,功能包括:设计成果统计与制图、自动/半自动航摄分区、自动航线敷设、自动调整曝光点间距、航线间距,保证立体观测重叠度指标、修改编辑曝光点、航线功能、构架航线、基站布设功能、片数、航线长度、距离等统计报告。航摄质量快速检查软件包括以下技术内容:快速浏览影像质量、检叠度指标、检查旋偏角指标、自动形成像片预览索引图、影像自动批量打号、输出航摄质量检查统计报表、快速检查飞行数据覆盖情况,以便决定补飞以及撤场事宜。同时直接关系到作业效率,飞行质量检查与评价。最核心的指标是重叠度和旋偏角,必须满足航测规范的要求。两张相邻航片,通过一对同名点即可根据影像宽度计算重叠度和旋偏角,数字航片原始片像素数固定,按照同样方式重采样后的预览片也可计算重叠度。
影像快速预处理软件的主要目的是为了改正无人机航摄影像的畸变差,基于影像纠正变换的畸变差改正软件就是为了提高摄影测量的精度,以便于后期处理时模型间的相对定向。软件包括以下技术功能:
⑴批处理读入TIF格式原始影像数据。
⑵读入相机参数文件。
⑶自动完成畸变差改正。
⑷对影像上像点坐标进行系统误差改正。
3无人机摄影测量的特点
无人机飞行平台自身的特性,使得无人机航摄影像和传统航摄影像之间有一定的差异。与传统航空摄影相比,无人机航摄系统的主要特点包括:搭载的是非量测数码相机、无人机平台飞行姿态不稳定、影像不仅像幅小而且重叠度大以及基商比小等。目前,专业的量测相机有SWDC-4数码航摄仪、ADS40、ADS80、UltraCAM大幅面数字航摄相机以及数字航摄相机DMC(DigitalMappingCamera)等,这些专业量测相机质量大、价格高主要适用于有人飞机的航空摄影测量,小型无人机平台是无法荷载这些专业测量相机的。因此,无人机航摄系统使用的都是价格低、质量轻的非量测数码相机。传统航空摄影使用最多的是23cmX23cni和18cmX18cm两种规格的胶片,而像幅尺寸与胶片大小有直接关系。但是,无人机航摄系统使用的非量测数码相机的像幅很小,航摄时通常设置成最大像幅模式,以便更好的利用像幅面积。因为航摄图片像幅的大小,直接影响航摄基线的长短。所以,当使用无人机进行航摄作业时,航摄基线变短,基高比变小。这就意味着空中三角形的稳定性变差,解算精度下降。小型无人机飞行平台自身的特性决定了它在低空飞行时容易受到气流的干扰。传统摄影测量采用有人大型飞机,飞行时受气流影响小姿态比较稳定。只要姿态角在±3°内,航向重叠度达到60%、旁向重叠度达到30%就可满足精度要求。同样的天气状况,无人机平台的姿态角会达到±10°或者更大。所以无人机影像重叠度都要比传统航摄影像的重叠度大很多,通常航向重叠度设置为70-85%、旁向重叠度设置为35-55%。以此来保证航摄影像的质量和后续处理成果的精度。
4无人机航测的应用
4.1电网应急救灾
我国属于自然灾害多发国家,平均每年因灾造成直接经济损失近2000亿元,灾害突发时,采取恰当的应急措施可以大幅降低经济损失。为应对突发的自然灾害,减轻灾害对国家电网造成的损失,及时恢复、重建电网,国家电网公司建立了应急救灾指挥中心,但应急手段还须完善。灾害发生时及时获取灾区的高清晰影像,第一时间为应急救灾指挥中心提供现场影像资料至关重要。但是,灾害发生时往往伴随恶劣的天气状况,如2008年南方冰灾,当时的受灾地区受天气影响,采用普通航飞、卫星拍摄等方法无法及时获取灾区的高分辨率影像,利用无人机低空遥感系统机动性高、环境适应性强、无需机场起降、对天气条件要求低等特点,可以及时、高效获取高清晰影像,为国网公司应急救灾指挥中心进行灾害评估、制定救灾决策、制定电网重建方案提供先进、可靠的技术手段。
4.2无人机航测绘制大比例尺地形图
无人机航摄系统自身的特点和性能决定影像的获取和处理都与传统的航空数码影像存在差异,下面将具体介绍无人机航摄影像的获取与处理流程。采用DPGrid影像快速处理系统,对无人机影像进行处理。
(1)航空摄影:使用无人机飞行平台搭载Canon5DMarkII数码相机对测区进行航空拍摄,并获取摄区影像。航线设计是航摄影像信息采集前的关键技术,需要对影像的地面分辨率、航摄区域的形状和地形特点以及数码相机性能等因素进行综合考虑,以保证影像精度和质量为前提进行航线的最优设计。
(2)像片控制测量:像控点可按区域网布设,为提高像控点的加密精度,可以在区域网的两端和中部位置增加平高点。采用RTK、GPS静态或测距导线测定像控点平面坐标,采用GPS曲面拟合或图根水准测定像控点高程。
(3)内业测图:在全数字摄影测量工作站上进行地形要素数据集。影像模糊或立体判测有疑问的地物,要做出标记供外业补调,内业能定性的地形要素可直接标注图式符号。
(4)外业地形图调绘:外业调绘和补测时,简单易补测的新增地物可直接补测上图,只需标注好与附近相关地物的距离尺寸;成片新增地物可用全站仪或RTK进行野外集数据,配合外业草图进行编辑。
(5)将编辑好的数字线划地形图按照CASS软件的数据标准,编辑成需要的数字地形图。
参考文献:
[1]刘小民.基于全数字摄影测量系统的数字正射影像图的制作[J].测绘科学.2010,35(4):198-199.